arXiv:2404.00666v1 [cs.LG] 31 Mar 2024

Accelerated Parameter-Free Stochastic Optimization

Itai Kreisler* Maor Ivgi* Oliver Hinderf Yair Carmon*

Abstract

We propose a method that achieves near-optimal rates for smooth stochastic convex opti-
mization and requires essentially no prior knowledge of problem parameters. This improves on
prior work which requires knowing at least the initial distance to optimality dy. Our method,
U-DoOG, combines UniXGrad (Kavis et al. [28]) and DoG (Ivgi et al. [25]) with novel iterate
stabilization techniques. It requires only loose bounds on dy and the noise magnitude, pro-
vides high probability guarantees under sub-Gaussian noise, and is also near-optimal in the
non-smooth case. Our experiments show consistent, strong performance on convex problems
and mixed results on neural network training.

1 Introduction

We consider the problem of minimizing a smooth convex function using access to an unbiased
stochastic gradient oracle. This is a fundamental problem in machine learning, including many
important special cases such as logistic and linear regression. Moreover, the smoothness assumption
is crucial for developing one of the most widely used improvements for the classical gradient method:
Nesterov acceleration [41].

Nesterov acceleration obtains the optimal rate of convergence for this problem but is strongly
reliant on knowing the problem parameters. Specifically, Lan [32], who first demonstrated the
theoretical value of Nesterov acceleration on smooth stochastic convex functions, requires knowledge
of the smoothness parameter 3, the distance dy from the initial point to the optimum, and a
value o for which the noise is o-sub-Gaussian. Accelerated adaptive methods [12, 28] do not
require knowledge of # and o, but assume knowledge of dy. For non-smooth stochastic convex
optimization, parameter-free methods [e.g., 46, 14, 6, 38, 26, 8, 25] require only loose knowledge of
problem parameters to obtain near-optimal rates. Finding such parameter-free methods for smooth
stochastic optimization is a longstanding open problem.

Our contribution. We solve this open problem, designing an accelerated parameter-free method
which we call UNIXGRAD-DOG, or U-DOG for short. U-D0OG combines the “universal extragra-
dient” (UNIXGRAD) framework [28] with the “distance over gradient” (DOG) technique [25]. More
specifically, we replace the domain diameter D in the UNIXGRAD step size numerator with the
maximum distance from the initial point, similar to the DoG step size numerator. Furthermore, we
use this maximum distance to automatically tune the “momentum” parameter a; of UNIXGRAD.
Finally, we modify the UNIXGRAD step size denominator to ensure the stability of the iterate
sequence. U-DOG only requires a loose upper bound & on ¢ and lower bound r. on D.! As long as

*Tel Aviv University, kreisler@mail.tau.ac.il, maor.ivgi@cs.tau.ac.il, ycarmon@tauex.tau.ac.il.
TUniversity of Pittsburgh, ohinder@pitt.edu
'In fact, we only require local upper bounds of the form &(x) on the noise sub-Gaussianity.

mailto:kreisler@mail.tau.ac.il
mailto:maor.ivgi@cs.tau.ac.il
mailto:ycarmon@tauex.tau.ac.il
mailto:ohinder@pitt.edu

Algorithm Unbounded Insensitive to... Rate of High

name domain? dy/D p o convergence probability?
U-DOG (this work v v OB) 7
work) VT

X sovov OB+ R) v
UNIXGRAD [28] X x v v o4 %) X
Cutkosky [12] v X v v O(H+k X
Lan [32] v X X X Oo(H+k v
DoG [25] / CO [14] v oo/ O(%f+oa+ii) v /x

Table 1: Comparison of U-DOG and prior work on S-smooth stochastic optimization with o-sub-
Gaussian noise. “Unbounded domain” indicates if the algorithm is defined over the whole Euclidean
space or a bounded subspace. In the former case we express rates in terms of the initial distance
to optimality dyp and in the latter case we use the domain diameter D. Under “Insensitive to...”
we mark X if the suboptimality bound grows polynomially with error in the parameter, v if it only
affects logarithmic factors or low order terms, and v if there is no dependence on the parameter at
all. The marker X indicates algorithms that require an upper bound L on gradient norm, which may

be much larger the the upper bound 6 on the noise. The notation O (-) hides polylogarithmic factors.

& is loose by at most a /T factor and r, is loose by any poly(T) factor, we obtain a near-optimal,
high-probability rate of convergence; Table 1 states U-D0G’s guarantees and compares it to prior
work. Moreover, U-DOG simultaneously enjoys a near-optimal, parameter-free rate of convergence
for mon-smooth problems.

We conduct preliminary experiments with U-DOG as well as another algorithm, A-DoOG,
which combines ACCELEGRAD [33] and DoG. On convex optimization problems, both U-DoG
and A-DoOG often substantially improve over DOG, especially at large batch sizes, with A-DoG
outperforming U-DOG, likely due to not requiring an extra-gradient computation at each step.
On several problems, A-D0OG matches the performance of carefully tuned SGD with Nesterov mo-
mentum. On neural network optimization problems, however, we observe that both U-DoG and
A-DoG do not consistently improve over DOG.

1.1 Related work

Non-smooth stochastic optimization. The majority of tuning-insensitive stochastic optimiza-
tion methods are developed for online convex optimization. Online regret bounds immediately
translate to suboptimality guarantees for non-smooth stochastic optimization using online-to-batch
conversion [45, Section 3|. Proposed methods divide roughly into adaptive algorithms such as
adaptive SGD [35, 20], AdaGrad [19, 37] and variants [e.g., 30, 52, 55|, and parameter-free methods
[56, 44, 36, 46, 14, 13, 6, 38, 26]. Adaptive methods typically require no knowledge of the stochastic
gradient bound but need to know the initial distance to optimality (or the domain diameter), while
parameter-free methods are robust to uncertainty in the distance but require some (loose) bound
on the stochastic gradient norms.

Recent work [8, 25] develops parameter-free methods that hew closer to SGD and eschew online-
to-batch conversion for high-probability guarantees in the stochastic setting; U-D0OG continues this
line. In particular, it extends the core mechanism of DOG [25] wherein iterate movement serves as a
proxy for the distance to optimality. D-Adaptation [15], DoWG [29], and Prodigy [39] use a similar

mechanism, but only provide guarantees for the non-stochastic setting. Ensuring the validity of
the mechanism (i.e., that iterates never move too far away from the optimum) is a key challenge
in its analysis. This challenge becomes greater in the smooth setting, where selecting too small of
a step size nullifies the benefit of acceleration. Much of our algorithmic and analytical innovation
addresses this challenge.

Non-stochastic smooth optimization. Without noise, Nesterov acceleration requires knowl-
edge of the smoothness constant 8 but not the distance to optimality [41, 42]. The methods [33, 28]
reverse this tradeoff, requiring the distance but not 8. Line search techniques such as [5, 9] provide
much stronger adaptivity, attaining the optimal gradient evaluation complexity up to an additive
term that depends logarithmically on the uncertainty in 5. However, line search can be challenging
to employ efficiently in the stochastic setting as we can no longer accurately evaluate the function.
Indeed, there are many works that analyze stochastic line search techniques [e.g., 47, 57] but none
have obtained convergence guarantees close to that of Lan [32].

Smooth stochastic optimization. Several adaptive and parameter-free methods [20, 14, 8, 25,
29] converge faster on smooth functions. However, they do not improve all the way to the optimal
rate (see Table 1) due to a missing “momentum” component. Cutkosky [12] gives an improved
online-to-batch conversion framework that endows adaptive SGD with momentum and accelerated
rates in the smooth case, but requires a bound on the distance to optimality. Kavis et al. [28] propose
UNIXGRAD, combining ideas from [12] with the mirror-prox/extragradient algorithm [40, 17] and
online learning [35, 51] to obtain optimal rates assuming bounded domains of known diameter
D and assuming that dg is of the order of D. U-D0OG modifies UNIXGRAD and removes both
assumptions, yielding the first parameter-free accelerated method.

2 Preliminaries and algorithmic framework

In this section, we set up our notation and terminology, and use them to present the general U-DoG
template (Algorithm 1) defining the algorithm up to the choice of adaptive step sizes, which we
gradually develop in the following sections.

Basic notation and conventions. Throughout, [|-|| denotes the Euclidean norm, log is base e
and log, (z) = 1+log(x). The function Projy(-) denotes Euclidean projection onto set X'. We say
that f: K — R is S-smooth if V f is g-Lipschitz, i.e., ||V f(u) — Vf(v)|| < B|lu—v|| for all u,v € K.
We write [-], := max{-,0}.

In this work, we minimize an objective function f via queries to a stochastic gradient estimator
G. We make the following assumption in all of our theoretical analysis.

Assumption 1 (Made throughout). The objective function f : I — R is convex, L-Lipschitz, -
smooth,? has closed convex domain K, and its minimum is attained at some x, € argmin,c f(z).
For all x € K, the gradient estimator G satisfies EG(z) = V f(x).

20ur results hold in the non-Lipschitz or non-smooth cases by setting L = co or 8 = oo, respectively. In the
non-smooth case we define V f(x) := EG(x) and assume it is a subgradient of f.

Algorithm 1: U-DoG (UNIXGRAD-DOG) template

Input: Initial 29 € K, iteration budget 7', initial movement 7., step sizes {ng. ¢, 7y.+}

1 Set yo = xo
2 fort=0,1,2,...,7T—1do

3 Set ap = Y j_o7r/Tt and w; = oy for 7= I}clgi(max{ﬂyk — o], ||xk — xol|, e}
- t—1
4 T = Projc(ye — aumgmy) for my ~ G(%) and 2 = wtyﬁ%i’“:(’:kzk*l
k=0 %k
t—1
5 Yir1 = Projic(ye — ounyege) for g~ G(&;) and 2 = ww”l;:;’“:b‘fk““
k=0 c

6 return I

Presenting U-DoG. Algorithm 1 provides the general template of U-DOG. As in UNIXGRAD
[28], each iteration of the algorithm consists of two stochastic gradient steps, with each stochastic
gradient queried at a moving average of iterates. Unlike UNIXGRAD, the moving average weights
w¢ and the step size multipliers oy are not fixed in advance, but are instead dynamically set based
on the maximum distance moved from the origin, denoted

re = maxmax{|ly — zol|, llzx — zoll, ve}-

The parameter r. serves as a (loose) lower bound on |xg — x,||; typically, 7, grows rapidly and
then plateaus at a level roughly approximating ||xg — z4||. When that happens, the sequence
Q¢ = Y <y T/ grows linearly in ¢, similar to ay =t + 1 in UNIXGRAD.

To complete the specification of U-DOG we must set the step size sequence. UNIXGRAD

assumes K the domain has Euclidean diameter D and picks step sizes of the form 7,; = 1y =
V2D
V1+Qi-1

where

¢
Q=) qr and g = afllge — my|. (1)
k=0
To handle unknown domain size and unbounded domains, U-DOG follows DOG in using 7; as the
step size numerator in lieu of D. Thus, the U-D0OG step size admits the general form

T

and 1y = , where Gp0<Gyo<Gz1<---. (2)

Nzt =
x,t Gy,t

In the appendix, we also use the notation
1 1
Net = —F=—= and 7y = —F——. (3)
‘ Gx,t Y v Gyﬂf

For bounded domains, setting G,; = Gy = 1 + Q¢—1 recovers the UNIXGRAD guarantees up to
logarithmic factors. However, for unbounded domains, ensuring the stability of U-DoOG (i.e., that
7 never grows much larger than ||zg — z,||) requires more careful selection of G, Gy . Enforcing
iterate stability without compromising the rate of convergence is the main challenge we overcome.
To that end, we define a few frequently appearing quantities:

ro i= macflyg — ol low — woll} » dii= llge — 2l , do = maxd,

60 log(6t)
J

M, = %gf{aiﬂmkHQ} and 0; ;5 = log

4

UniXGrad as a special case. For a domain with Euclidean diameter D, setting . = D+v/2 and
G = Gyt = 14 Q—1 recovers UNIXGRAD (with Euclidean distance generating function) exactly,
as it implies 7 = D+/2 for all ¢ and hence ay =t + 1.

3 Analysis in the noiseless case

We begin our analysis under the simplifying assumption that gradients are computed exactly.
Assumption 2. In addition to Assumption 1, we assume that G(z) = V f(x) with probability 1.

This noiseless setting allows us to isolate and address the keys challenges of exploiting smoothness
and stabilizing the iterates.

3.1 General suboptimally bound

Our first result is a bound on the suboptimality of U-DOG for general step sizes; see Appendix A.1
for complete proof. To interpret Proposition 1 recall that dy is the initial distance to the optimum
and the definition of @Q; given in (1).

Proposition 1. In the noiseless setting (Assumption 2), suppose the U-DOG step sizes (2) satisfy
Ggt > Qi1 for allt > 0. Then for every t > 0 and for any number s > 0, we have

$3/2B(Fep1 + do)2 + (Te41 + do) [\/ max{Gy¢, Qt} — sv/ ch))
o 2 ’
(ZZ:O k/Tet1)
Before sketching the proof of Proposition 1, let us explain how it yields the desired rates of con-

vergence if we momentarily set aside iterate stability and assume 74 < D for all ¢, e.g., because the
domain has diameter D. In this case, we may choose G, ; = Gy = Q¢—1 similarly to UNIXGRAD.

%). As shown in [25, Lemma
k=0 Tk/Tt+1

3], we have max;.p ZII;:O Tr/Tee1 = Q(T log_l(fT/re)), meaning that for some t < T we obtain

f@) = flz) <O (

Substituting s = 1 in eq. (4) guarantees suboptimality O(

the near-optimal rate O(ﬁT—DZ2 log? g) Moreover, since oy < t + 1 for all ¢, when all gradients are
bounded by L we have Q; = O(L? > k<t a2) = O(L?t3). Substituting s = 0 in eq. (4) and reusing

LD
2
We also see that setting r. = Q(D) recovers the UNIXGRAD guarantees in the noiseless setting,

which is to be expected since 7. = Dv/2 recovers UNIXGRAD itself as explained in the previous
section.

Our proof of Proposition 1 combines ideas from the analyses of UNIXGRAD and DOG. It
centers on the weighted “regret” R; := ZZ,:O Wk (gk, Tkr1 — T«) Where wy = 7. This is similar
to the weighted regret considered for UNIXGRAD with additional weighting by 7; used in the DOG
analysis. Algebraic manipulation of R; gives (recall that d; = |lyr — z4]|),

t t
R¢ <O (ftzﬂv Qt + Z(di —di 1)/ Gyk — Z”fﬂkﬂ Y Qk) :
k=0 k=0

We use a telescoping argument from DOG in order to bound 22:0 (dz —d2 +1) Gy by
0 (ft+1(ft+1 + dp) /Gyﬂg). Next, following UNIXGRAD we leverage smoothness to write

our bound on the denominator gives the near-optimal rate O< log? g) in non-smooth setting.

2
IV £ (@) — VG| = Lk

2
Zk: Wi . R Lem. 12 a2 R R
ki1 — yill* = <Zwsl &% — 21> > Zk||$k = =15

ap
4[32

where the last equality is the first time we assumed exact G. We then show that, for all S > 0,

V@i 2 9(5v@ - 5°7); (5)

Q\M

t t
S llwe - mlPV@r = >
k=0 k=0

this is a streamlined version of key arguments in [33, 28] where the authors carefully split the sum
above based on the value of the adaptive step size. Taking S = s 741(F¢41 + do) and substituting
back, we get

R <O (83/2ﬁ"’t+1(7’t+1 +do)? + a1 (Frar + do) [\/maX{Gym Qi — S\/@]) : (6)
+

To conclude the proof, we use the following UNIXGRAD “anytime online-to-batch conversion” [12]
bound:

fae) - f(x.) <Z (V£ (@), 2 — B) = o

t b
—o Die owz > ko W

(7)

where the last equality is the second and final time the proof uses the noiseless gradient assumption.
Dividing eq. (6) by

Lem 12 1

Zwk > *Ttat** (ZW/H) >;Tt+1<zrk/rt+l>a (8)
k=0

and employing (7) yields the suboptimality bound (4).

3.2 Iterate stability

In the discussion following Proposition 1 above, we provisionally imagined that the iterates were
bounded (7; < D for all) and argued that in this case simply setting G,; = Q;—1 and G ; = Q;
suffices for obtaining optimal rates whenever D = O(dyp). However, in unconstrained settings this
choice of step size is hopeless, as it makes 7, o infinite, implying divergence at the first step!?

In the following proposition, we identify two conditions that together guarantee the iterates
remain appropriately bounded. The complete proof appears in Appendix A.2.
Proposition 2. In the noiseless setting (Assumption 2), let s > 0 and define ¢; = 12 log%_ (ﬂ>

s

If re < dp and the U-DOG step sizes (2) satisfy (i) Gyt > ci(s+ Q) (with Gy o > 144s), and (ii)
max{||zi+1 — el |ye+1 — xe41]|} < 20? for all t > 0, then we have

di < 2dg and 7 < 4dy for all t > 0.

Let us briefly explain the two requirements in Proposition 2. Requirement (i) folds two con-
ditions into one. The first is that we increase the UNIXGRAD denominator by a logarithmic
factor—this is analogous to the step size attenuation necessary to ensure the stability of DOG (i.e.,
the T-DOG step size [25, Section 3.3]). The second is more subtle, requiring that Gy ; upper bound
Q@ (rather than Q;—; as in UNIXGRAD and Proposition 1) and hence depend on | g, — my||. This
is essential for guaranteeing stability but is also the cause for considerable technical difficulty in

3For constrained domains, however, this choice results in a valid scheme where the first step jumps to the domain
boundary. Indeed, UNIXGRAD also behaves this way for sufficiently scaled-up instances since it uses a fixed, arbitrary
value for n,,0. This underscores UNIXGRAD’s strong reliance on the bounded domain assumption.

the noisy setting. Requirement (i) simply asks that U-DOG iterates at time ¢ move by no more
than a fraction of the estimated distance to optimality 7¢; a reasonable requirement if the estimate
is good.

The proof of Proposition 2 is a careful application of the T-D0OG stability proof [25, Proposi-
tion 2] to the U-DOG template. The key to the proof is the following modification of the UNIXGRAD
online-to-batch conversion bound (7), which states that for any optimum z, we have

t

t
RE =Y Nykk (Grs Thi1 — Ts) u > ko (VF (k) Thpr — 24) > 0, 9)
k=0 k=0

where (x) holds only in the noiseless setting. We algebraically manipulate R} similarly to the
weighted regret in the proof of Proposition 1. Writing @} = c?fl(s + Q¢), we obtain

t 72 \/@ e
R s * - T —Ykl” + ||z —y
" kz::< e \/W NGA (lzxsr = ol + lzrr = v l®) |-

Our requirements Gy > Q) (which entails G, > Gyr—1 > Q) and [|zgr1 — Yel> + | Tkt —

) =2
ka1 l]? < 8(%, allow us, with some more algebra, to bound the last two summands by %.
k
From here, the proof proceeds identically to the T-DOG analysis [25, Section 3.3]: we get that
=2
Zk . Ck9;1i7£k) < 1t by the choice of ¢;, and substituting back obtain that df,; < d + ik, which

by straightforward induction implies the desired bounds on d; and 7.

3.3 Rate of convergence in the noiseless case

With the conditional stability guarantee of Proposition 4 in place, we are ready to face a central chal-
lenge: finding step sizes 7, ¢, 7y, that satisfy the proposition’s conditions but still lead to good rates
of convergence in the smooth case. Our solution is (recalling the notation M; = maxy<¢{aj||my||*}):

Tt

1210g3_(w)\/max{”mo”2 + Qi—1, My}

l[moll*

Nzt =

(10)

T

. .
1210g3 (L5l)\ max{[fmo 2 + @, i}

Myt =

Clearly, the step sizes (10) satisfy the first condition in Proposition 2 with s = ||mg|?. To see
why the second condition holds, note that, since /M; > a¢||my||, we have n,; < m By the
contractive property of projections, we therefore have

27"1‘L

H96t+1 - yt” <N t04t||mt\| < - < -
Ct Ct

27“,5

A similar argument also shows that ||xy11 — yep1|| < =2, fulfilling the conditions of Proposition 2
(see Lemma 6).

Now the question becomes: how does the introduction of M; into the step size affect subopti-
mality? In the non-smooth case the effect is minimal, as we anyway bound Q; with O(L?t?), and
M; = O(L?t?) is of a lower order. In the smooth case, however, M; is potentially more harmful,

since while Proposition 1 allows us to cancel the dependence on); by setting s = ¢, it leaves M;
hanging in the numerator, yielding f(Z:) — f(z4x) < O (é (cf/Q,Bdg + ctdO\/Mt>>
t

7

Fortunately, smoothness allows us to relate M; back to the optimality gap f(#;) — f(z4). In
particular, in the unconstrained setting I = R" we have

Imel|* < 2[|ge — mell” + 2l gell* < 2Q1/af + 4B[f (&) — f(x4)],

where the last transition used that g, = V f(Z;) in the noiseless setting. Combining this bound
with Proposition 1, we obtain

3/2 2 -
B + \/ By maxe<q o} [() — F ()
f(@) — fze) <O \/ 0 MaXp<y Q| J Lk x |

at

from which f(z:) — f(xx) < O <Ct S) follows by induction. Thus we arrive at our final guarantee

in the noiseless case: Theorem 1 (see full proof in Appendix A.3).

Theorem 1. In the noiseless setting (Assumption 2) with K = R™ and 1"6 < dp, using the step sizes
q. (10), we get that dr < 2do, T < 4dy and, for T = argmax,.p Y ;o = 7't+17 the suboptimality is

f(@;)— f(ze) <O <cr67T mm{ﬁde, L\Z;}) ,

- 2
where ¢, 7 = logi <1 + W) IOg%r (CTLS)

4 Analysis in the stochastic case

In this section we extend the U-DOG guarantees to the noisy case. We start by assuming that the
gradient noise is bounded, a setting that captures most of the remaining technical challenges. We
then generalize our results to sub-Gaussian noise by means of a black-box reduction [3]. Finally,
we specialize the U-DOG guarantee for mini-batches of bounded gradient estimates. Throughout
this section, we denote the empirical variance at time ¢ by

t
Z lge = VF @) + [lme — V£ (20)IP).- (11)
k=0
We also recall the notation 60log(6
05 = log Of(t).

4.1 Analysis with bounded noise

We formalize the bounded noise assumption as follows.

Assumption 3. In addition to Assumption 1, we assume that ||G(z) — Vf(x)|| < b(z) with
probability 1 for all 2 € K, for some (known?) function b : K — R

4We may view b as a coarse upper bound on the true noise magnitude, as it only affects low order terms in our
bounds.

For the iterates of U-D0OG we define

by == b(2;) and b; = max{mggi b, b(ég)}. (12)

With the assumption and notation in place, we state the stochastic equivalent of Proposition 1 in
the following (see proof in Appendix B.1).

Proposition 3. In the bounded noise setting (Assumption 3), suppose the U-DOG step sizes (2)
satisfy Gy > Qi—1 for every t > 0. Then for any B >0, T €N, and d € (0,1), with probability at
least 1 —§ — P[br_1 > B] we have, for allt < T and s > 0,

(14 8)(Fee1 + do)\/t39t+1,5Vt + (t0i415B)*
2
(ZZ:O Tk/TtJrl)

$3/2B(Fs114+do) 2 +(Frr14do) [\/ maX{Gy,sz}—S\/@] N
(Zh=o fk/ft+1>2

f(i't) - f(.%'*) <0 RHSeq. (4) +

where RHSq, (1) =

as in Proposition 1.

Proposition 3 is a fairly straightforward extension of its noiseless counterpart. The bound (5)
continues to hold if we replace Q; with Q; = Y5 _ a7 min{|lgx — ms|% IV f (@) — VF(Zr)|?}-
Proceeding as in the proof of Proposition 1, we conclude that

(@) = flz) <O (RHSeq @+ o) (@200 Ehunts (jk)_g’“”:’“+l_z*>> .

(Xh=o fk/ftﬂ)z

We show that Qi 2 _ ZQt1 /2 <0 (\/ t3Vt) by straightforward manipulation. Furthermore, using a
time-uniform empirical-Bernstein-type concentration bound [24, 25] (Lemma 8) to show that (with
the appropriate high probability) the martingale difference sum ZZ:O wi (Vf(Zk) — gk, Thr1 — T

is bounded by O <T‘tdt+1 \/t36t+175‘/t -+ (t9t+175%)2>.

Next, we extend our iterate stability guarantee to the stochastic setting (see proof in ap-
pendix B.2).

Proposition 4. In the bounded noise setting Assumption 3, let s > 0, T' € N and 6 € (0,1),
and define ¢; = 40007 s log%r (#) Suppose that r. < dy and the U-DOG step sizes (2) satisfy,
with probability 1, for all t > 0: (i) Gys > 2(s + Qi) (with Gy > 40()20%753), (41) max{|x¢r1 —

Yell, lyesr — weaall} < F2, (160) /Gy 2> coap max{|[Vf(@e) — gell, IV f(@e) = mell}, and (iv) nye is
independent of g given xq,...,x;. Then, we have with probability of at least 1 — 6,

dy <2dy and 7 < 4dy for allt < T.

Conditions (i) and (i7) of Proposition 4 are identical to their noiseless counterparts in Propo-
sition 2, while conditions (éi7) and (iv) are new, and facilitate the application of a concentration
bound to the weighed regret R; defined in eq. (9). In particular, the condition (iv) ensures that
Z';;:O Ny ke (g — Vf(Zk), Try1 — Tx) is a martingale difference sequence, and condition (i7i) guar-
antees boundedness required by our concentration bound (Lemma 9). With this high-probability
bound in place, the proof continues in the same vein as the noiseless case.

When searching for step sizes meeting the conditions of Proposition 4 we encounter two chal-
lenges. First, condition (iii) asks Gy to be large compared to a quantity depending on the exact

gradient V f(Z;), which we cannot access directly. We solve it using the bounds given in (12).
Simply adding c7(t+1)?b7 > cZa?b? to G+ guarantees that /Gy ¢ > crou||V f(2¢) — g¢||. Moreover,
using [|ul|? + [|v]|* > 3|lv + ul|?, we have

_ . 1 .
lge — mell* +6F = llge — mel|* + |V f(@1) = gel® = SV f(@e) — me]|*.

Therefore, taking Gy = cZ(s + 2Q; + 2(t + 1)%b?) fulfills condition (iii). However, it violates
condition (iv) which leads us to the second challenge: how to avoid dependence on ¢;? To address
this challenge, we employ the somewhat unusual trick of drawing a fresh stochastic gradient gz ~
G(#;) which is, by construction, independent of g; given &;. We can now replace the forbidden
lg¢ — my|| with the valid upper bound 2||g; — m| + 8b; and thus satisfy conditions (i) and (ii7)
without violating condition (iv).

To satisfy condition (i4) we introduce M; to Gy as done in the noiseless setting and make
another modification to ensure the monotonicity required in (2). Writing,

t
Gr =207 [1ge —mall® , Q=Y max{qy, G} and p;=8(t +1)°67, (13)
k=0

our final step sizes are:

T
Net = 5 +Q L —
40007 5 log? (1 + %) \/max{ lmol|? + po + pe—1 + Qe—1, Mt} (14)
77
Tt = 2 +3+Q t - A ‘
40007 5 log? (1 + mﬁ) \/Irlax{HmoH2 +po+ Pt + G + Qi—1, My}

Similar to the T-DoOG step sizes [25, Section 3.3], our step sizes depend logarithmically on the
desired confidence level § and double-logarithmically on the maximum iteration budget 7.
With all the pieces in place, we now state our main result (see proof in Appendix B.3).

Theorem 2. In the bounded noise setting (Assumption 3) with K = R™, for any T € N and
d € (0, %), consider U-DOG with step sizes (14). With probability at least 1 —54, we have dr < 2dy,
7 < 4dy and for T = argmax,_p > and by = MaxX,,|;—q, |<2do10(2)} we have

Bd3 Ldg } ENAGN dob*)>
T2 \T VT T))

min 2
where ¢5p T = 10g2(%) log <1 + TlMW) logi(‘i—o) and V;, defined in eq. (11), is

T4
1<t Tt41

F(7)= $(22) <O (cspr (min (15)

f(@o)—f(zx) Te
the empirical noise variance.

We remark that under our assumptions it is straightforward to replace the empirical variance V;
in eq. (15) with its expectation without altering other non-logarithmic terms in the bound, e.g.,
via Hoeffding’s inequality.

4.2 From bounded to sub-Gaussian noise

The bounded noise assumption makes analysis convenient but is not entirely satisfactory since
averaging independent bounded-noise estimators does not reduce the probability 1 noise bound,
preventing us from making statements about mini-batch scaling. To address this issue, we consider
the following standard assumption.

10

Assumption 4. In addition to Assumption 1, we assume that ||G(z) — Vf(z)|| is o?(z)-sub-
Gaussian for all x € K, for some (known) o : — R;.. That is,

P(|G(x) — Vf(z)| > 2) < 2exp(—2*/0”(x))
for all z >0 and z € K.

To move from bounded to sub-Gaussian we utilize a reduction due to Attia and Koren [3] that
allows us to essentially replace b(-) with o(-) in Theorem 2 at the cost of additional logarithmic fac-
tors. To that end, we define &; := max{max;<; o0 (%), 0(20)}, as well as o, == max,. |z, |<2d, O ()

2
and ¢ 5 = 310g1/ 2(%). With this notation in hand, we state our guarantee for the sub-
Gaussian setting (see proof in Appendix B.4).

Corollary 1. Consider the sub-Gaussian noise setting (Assumption 4) with K = R" and 4 € (0, %),
using the step sizes (14) with by = 6455, then with probability at least 1 — 65 we get that dr < 2dy,
77 < 4do, and the suboptimality bound (15) holds for b, = o,sr_15.

4.3 Corollary: mini-batch of bounded noise

Finally, we leverage our result for sub-Gaussian noise to demonstrate that U-D0OG automatically
benefits from increasing mini-batch size (see proof in Appendix B.5).

Assumption 5. In addition to Assumption 1, we assume that G(z) is the average of B unbiased
estimates of V f(x), each bounded by L with a known upper bound L > L.

Corollary 2. In the mini-batch setting (Assumption 5) with I = R™, for any T € N and § € (0, %),
consider U-DOG with step sizes (14) where by = /2 With probability at least 1 — 66 we

71: S
3 ﬁB_ t,0 -
have dp < 2dy, 7r < 4dy and, for T = argmax; 7 > .,

T4
41’

,Bd% (L—Fi/\/f)do
™ /TB ’

f(fijﬂ') - f(x*) <0 Cs,re, T

log (T L4min{pd2,Ld
where ¢ = y/log.. () log? (55) log! (1 N TM) togt (%)

5 Experiments

We test U-DOG on a suite of experiments on convex and non-convex learning problems. We also
heuristically derive and experiment with an algorithm we call A-D0G, which integrates ideas from
ACCELEGRAD [33] and DOG. Namely, it uses the ACCELEGRAD step with DOG numerator and
oy as in U-DOG. The pseudocode for A-DOG is given in Algorithm 2 in Appendix G.2.

We compare our algorithms to DOG as well as carefully tuned SGD with constant Nesterov
momentum (ASGD for short) across a wide range of batch sizes. Detailed experimental results and
analyses, as well as implementation details, are presented in Appendix G.

Our testbed consists of multiple classification problems based on the VTAB benchmark [64]
and libsvm datasets [10], which we solve with both multiclass log loss and least squares loss, as
well as a synthetic noiseless linear regression problem (see Appendix G.3). In addition, we perform
preliminary experiments in the non-convex setting, including training neural networks from scratch
on CIFAR-10 and VTAB datasets, and fine-tuning a CLIP model on ImageNet (see Appendix G.4).

11

Batches to train loss 0.062 Train loss for BS 4096 Train loss after 400 batches

1044 L 0.9999

9x1072 0.9997
0.9990 ¢
8x 1072 0.9968 2
1034 _ L :& 0.9900 g
g T VAR 09684 5
w 0.9000 =

@ 0.062 b 0.6838

3 -2 g 2
= 6x10 : S T T T T 0.0000
Batches to test accuracy 0.633 Test accuracy for BS 4096 Test accuracy after 400 batches 0.9999
0.633 - . =l '

1044 0.6 1 L i IV 0.9997
0.9990 ¢
0.5 r | 0.9968 2
| c
0.9900 @
3 0.44 c
10 | 0.9684 &
0.31 L 0.9000 =

e 0.2 & ! 0.6838

. - 21 . F —r ; B 0.0000

102 104 102 103 10* 1074 1072 10°
batch size batches evaluated learning rate
A-DoG m U-DoG e DoG + SGD A ASGD (momentum=0.9) ASGD (best momentum)

Figure 1: Training a linear model with ViT-32 features and least-squares loss on SVHN. Top: Train
loss. Bottom: Test accuracy after iterate averaging. First column: Batch size scaling of complexity
to reach target performance. Second column: Learning curves. Third column: ASGD performance
at all learning rates and momenta, contrasted with DOG variants.

On convex optimization problems, both U-D0OG and A-DoOG often substantially improve over
DoG, with A-D0OG achieving results comparable to well-tuned ASGD and outperforming U-DoOG,
likely by avoiding extra-gradient computations. Figure 1 illustrates these results on a particular
dataset and least-squares loss function configuration and Appendix G.3 repeats this figure for
additional configurations. The left panels in the figure show that the rate of convergence of A-DoG,
U-DoG and ASGD plateaus at a larger batch size compared to DOG and SGD without momentum.
This is the typical effect of acceleration in stochastic optimization [53], and is also supported by
Corollary 2 which shows that, for sufficiently large batch size, U-DOG converges at rate scaling
as 1/T2. In contrast, non-accelerated methods like DOG and SGD converge with rate scaling as
1/T. The right panels of the figure show that, at a tight computational budget, the performance
of ASGD is very sensitive to the tuning of both step size and momentum, with only the very best
values matching the performance of A-DOG. When using logarithmic instead of least-squares loss,
the test accuracy becomes more robust to large step size choices (see Figure 2 in the appendix).
This is partly because the log loss is Lispchitz which prevents complete divergence at any fixed step
size.

In our preliminary non-convex experiments on neural network models (reported in detail in
Appendices G.3 and G.4), we find that U-DOG often fails to converge to competitive results,
while A-DoG is competitive with DOG on most VTAB tasks, but under-performs it for CIFAR-10
and ImageNet fine-tuning, indicating that it is not a yet a viable general-purpose neural network
optimizer.

12

Acknowledgments

We thank Konstantin Mishchenko for helpful discussion. This work was supported by the NSF-BSF
program, under NSF grant #2239527 and BSF grant #2022663. MI acknowledges support from the
Israeli Council of Higher Education. OH acknowledges support from Pitt Momentum Funds, and
AFOSR grant #FA955023-1-0242. YC acknowledges support from the Israeli Science Foundation
(ISF) grant no. 2486/21 and the Alon Fellowship.

References

[1]

[11]

[12]

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Joze-
fowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Va-
sudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng.
TensorFlow: Large-scale machine learning on heterogeneous systems, 2015.

E. Alpaydin and F. Alimoglu. Pen-Based Recognition of Handwritten Digits. UCI Machine
Learning Repository, 1998. DOI: https://doi.org/10.24432/C5MG6K.

A. Attia and T. Koren. SGD with AdaGrad stepsizes: Full adaptivity with high probability to
unknown parameters, unbounded gradients and affine variance. In International Conference
on Machine Learning (ICML), 2023.

C. Beattie, J. Z. Leibo, D. Teplyashin, T. Ward, M. Wainwright, H. Kiittler, A. Lefrancq,
S. Green, V. Valdés, A. Sadik, et al. Deepmind lab. arXiv:1612.05801, 2016.

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. STAM journal on imaging sciences, 2(1):183-202, 2009.

A. Bhaskara, A. Cutkosky, R. Kumar, and M. Purohit. Online learning with imperfect hints.
In International Conference on Machine Learning (ICML), 2020.

J. Blackard. Covertype. UCI Machine Learning Repository, 1998. DOL:
https://doi.org/10.24432/C50K5N.

Y. Carmon and O. Hinder. Making SGD parameter-free. In Conference on Learning Theory
(COLT), 2022.

Y. Carmon, D. Hausler, A. Jambulapati, Y. Jin, and A. Sidford. Optimal and adap-
tive monteiro-svaiter acceleration. In Adwvances in Neural Information Processing Systems
(NeurIPS), 2022.

C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector machines. ACM Transactions
on Intelligent Systems and Technology, 2011.

G. Cheng, J. Han, and X. Lu. Remote sensing image scene classification: Benchmark and
state of the art. Proceedings of the IEEE, 105(10):1865-1883, 2017.

A. Cutkosky. Anytime online-to-batch, optimism and acceleration. In International Conference
on Machine Learning (ICML), pages 1446-1454, 2019.

13

[13]

[14]

[15]

[16]

[19]

[20]

[21]

A. Cutkosky. Artificial constraints and hints for unbounded online learning. In Conference on
Learning Theory (COLT), 2019.

A. Cutkosky and F. Orabona. Black-box reductions for parameter-free online learning in
Banach spaces. In Conference on Learning Theory (COLT), 2018.

A. Defazio and K. Mishchenko. Learning-rate-free learning by D-adaptation. In International
Conference on Machine Learning (ICML), 2023.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A large-scale hierar-
chical image database. In Conference on Computer Vision and Pattern Recognition (CVPR),
20009.

J. Diakonikolas and L. Orecchia. Accelerated extra-gradient descent: A novel accelerated
first-order method. In Innovations in Theoretical Computer Science (ITCS), 2018.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. De-
hghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth
16x16 words: Transformers for image recognition at scale. In International Conference on
Learning Representations (ICLR), 2021.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(7), 2011.

V. Gupta, T. Koren, and Y. Singer. A unified approach to adaptive regularization in online
and stochastic optimization. arXiv:1706.06569, 2017.

C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau,
E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk,
M. Brett, A. Haldane, J. F. del Rio, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard,
T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant. Array programming with
NumPy. Nature, 585(7825):357-362, 2020.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. Conference
on Computer Vision and Pattern Recognition (CVPR), 2016.

S. R. Howard, A. Ramdas, J. McAuliffe, and J. Sekhon. Time-uniform chernoff bounds via
nonnegative supermartingales. Probability Surveys, 17:257-317, 2020.

S. R. Howard, A. Ramdas, J. McAuliffe, and J. Sekhon. Time-uniform, nonparametric,
nonasymptotic confidence sequences. The Annals of Statistics, 49(2):1055-1080, 2021.

M. Ivgi, O. Hinder, and Y. Carmon. DoG is SGD’s best friend: A parameter-free dynamic
step size schedule. In International Conference on Machine Learning (ICML), 2023. We refer
to the latest arXiv version: https://arxiv.org/abs/2302.12022.

A. Jacobsen and A. Cutkosky. Parameter-free mirror descent. In Conference on Learning
Theory (COLT), 2022.

J. Johnson, B. Hariharan, L. Van Der Maaten, L. Fei-Fei, C. Lawrence Zitnick, and R. Girshick.
CLEVR: A diagnostic dataset for compositional language and elementary visual reasoning. In
Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

14

https://arxiv.org/abs/2302.12022

28]

[29]

[30]

[41]

[42]

[43]

A. Kavis, K. Y. Levy, F. Bach, and V. Cevher. UniXGrad: A universal, adaptive algorithm with
optimal guarantees for constrained optimization. Advances in Neural Information Processing
Systems (NeurIPS), 2019.

A. Khaled, K. Mishchenko, and C. Jin. DoWG unleashed: An efficient universal parameter-free
gradient descent method. In Advances in Neural Information Processing Systems (NeurIPS),
2023.

D. P. Kingma and J. Ba. ADAM: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015.

A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report, Uni-
versity of Toronto, 2009.

G. Lan. An optimal method for stochastic composite optimization. Mathematical Program-
ming, 133(1):365-397, 2012.

K. Y. Levy, A. Yurtsever, and V. Cevher. Online adaptive methods, universality and acceler-
ation. Advances in Neural Information Processing Systems (NeurIPS), 2018.

I. Loshchilov and F. Hutter. SGDR: Stochastic gradient descent with warm restarts. Interna-
tional Conference on Learning Representations, 2017.

H. B. McMahan. A survey of algorithms and analysis for adaptive online learning. The Journal
of Machine Learning Research, 18(1):3117-3166, 2017.

H. B. McMahan and F. Orabona. Unconstrained online linear learning in Hilbert spaces:
Minimax algorithms and normal approximations. In Conference on Learning Theory (COLT),
2014.

H. B. McMahan and M. Streeter. Adaptive bound optimization for online convex optimization.
arXiv:1002.4908, 2010.

Z. Mhammedi and W. M. Koolen. Lipschitz and comparator-norm adaptivity in online learn-
ing. In Conference on Learning Theory (COLT), 2020.

K. Mishchenko and A. Defazio. Prodigy: An expeditiously adaptive parameter-free learner.
arXiv:2306.06101, 2023.

A. Nemirovski. Prox-method with rate of convergence o(1/t) for variational inequalities with
Lipschitz continuous monotone operators and smooth convex-concave saddle point problems.
SIAM Journal on Optimization, 15(1):229-251, 2004.

Y. Nesterov. A method of solving a convex programming problem with convergence rate
O(1/k?). Soviet Mathematics Doklady, 27(2):372-376, 1983.

Y. Nesterov. Introductory Lectures on Conver Optimization: A Basic Course, volume 87.
Springer Science & Business Media, 2013.

Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Ng. Reading digits in natural
images with unsupervised feature learning. In NIPS Workshop on Deep Learning and Unsu-
pervised Feature Learning 2011, 2011.

15

[44]

[45]
[46]

[47]

[48]

[54]

[55]

[56]

F. Orabona. Dimension-free exponentiated gradient. Advances in Neural Information Process-
ing Systems (NeurIPS), 2013.

F. Orabona. A modern introduction to online learning. arXiv:1912.15213, 2021.

F. Orabona and D. P&l. Coin betting and parameter-free online learning. In Advances in
Neural Information Processing Systems (NeurIPS), 2016.

C. Paquette and K. Scheinberg. A stochastic line search method with expected complexity
analysis. SIAM Journal on Optimization, 30(1):349-376, 2020.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Te-
jani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. PyTorch: An imperative
style, high-performance deep learning library. In Advances in Neural Information Processing
Systems (NeurIPS), 2019.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, et al. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825-2830, 2011.

A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language super-
vision. In International Conference on Machine Learning (ICML), 2021.

S. Rakhlin and K. Sridharan. Optimization, learning, and games with predictable sequences.
In Advances in Neural Information Processing Systems (NeurIPS), 2013.

S. J. Reddi, S. Kale, and S. Kumar. On the convergence of Adam and beyond. In International
Conference on Learning Representations (ICLR), 2018.

C. J. Shallue, J. Lee, J. Antognini, J. Sohl-Dickstein, R. Frostig, and G. E. Dahl. Measuring
the effects of data parallelism neural network training. Journal of Machine Learning Research,
20:1-49, 2019.

O. Shamir and T. Zhang. Stochastic gradient descent for non-smooth optimization: Conver-
gence results and optimal averaging schemes. In International Conference on Machine Learning

(ICML), 2013.

N. Shazeer and M. Stern. Adafactor: Adaptive learning rates with sublinear memory cost. In
International Conference on Machine Learning (ICML), 2018.

M. Streeter and H. B. McMahan. No-regret algorithms for unconstrained online convex opti-
mization. In Advances in Neural Information Processing Systems (NeurIPS), 2012.

S. Vaswani, A. Mishkin, I. Laradji, M. Schmidt, G. Gidel, and S. Lacoste-Julien. Painless
stochastic gradient: Interpolation, line-search, and convergence rates. In Advances in Neural
Information Processing Systems (NeurIPS), 2019.

P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson,
K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, I. Po-
lat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen,

16

[63]

[64]

E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt,
and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python. Nature Methods, 17:261-272, 2020.

Wes McKinney. Data Structures for Statistical Computing in Python. In Proceedings of the
9th Python in Science Conference, 2010.

R. Wightman. PyTorch image models. https://github.com/rwightman/pytorch-image-m
odels, 2019.

J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba. Sun database: Large-scale scene
recognition from abbey to zoo. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2010.

J. Xiao, K. A. Ehinger, J. Hays, A. Torralba, and A. Oliva. Sun database: Exploring a large
collection of scene categories. International Journal of Computer Vision, 119(1):3-22, 2016.

S. Zagoruyko and N. Komodakis. Wide residual networks. In British Machine Vision Confer-
ence (BMVC), 2016.

X. Zhai, J. Puigcerver, A. Kolesnikov, P. Ruyssen, C. Riquelme, M. Lucic, J. Djolonga, A. S.
Pinto, M. Neumann, A. Dosovitskiy, L. Beyer, O. Bachem, M. Tschannen, M. Michalski,
O. Bousquet, S. Gelly, and N. Houlsby. A large-scale study of representation learning with the
visual task adaptation benchmark. arXiv:1910.04867, 2019.

17

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

Contents

1 Introduction

1.1 Related work oL
Preliminaries and algorithmic framework

Analysis in the noiseless case

3.1 General suboptimally bound oo o
3.2 Tterate stability o
3.3 Rate of convergence in the noiseless case L oL,

Analysis in the stochastic case

4.1 Analysis with bounded noise L L
4.2 From bounded to sub-Gaussian noise Lo
4.3 Corollary: mini-batch of bounded noise

Experiments

Proof for Section 3 (the noiseless setting)

A.1 Proof of Proposition 1
A.2 Proof of Proposition 2
A3 Proofof Theorem 1. e

Proofs for Section 4 (the stochastic setting)

B.1 Proof of Proposition 3
B.2 Proof of Proposition 4
B.3 Proof of Theorem 2. e
B.4 Proof of Corollary 1 e
B.5 Proof of Corollary 2

Suboptimality lemmas

C.1 Weighted regret to suboptimality conversion (Lemma 1)
C.2 Inductive suboptimality bound (Lemma 2)
C.3 General regret bound (Lemma 3)o L

Iterate stability lemmas

D.1 A weighted regret bound (Lemma 4) L
D.2 Inductive stability bound (Lemma 5) o L
D.3 Single-step iterate stability (Lemma 6) oL

Concentration bounds

E.1 An empirical-Bernstein-type time uniform concentration bound (Lemma 7)
E.2 Concentration bound for suboptimally proof (Lemma 8)
E.3 Concentration bound for iterate stability proof (Lemma 9)
E.4 Relating Q; to Q; (Lemma 10)
E.5 Concentration inequality for bounded random vectors (Lemma 11)

18

11

20
20
23
25

27
27
28
29
32
32

33
33
34
36

37
37
38
39

F Auxiliary lemmas 43

F.1 The growth rate of >, 7oy (Lemma 12) 0L 43
F.2 Discrete derivative lemma (Lemma 13) L. 44
F.3 Discrete integral lemma (Lemma 14) o L 44
F.4 Additional lemmas from prior work 45
G Experimental details 46
G.1 U-DOG step sizes v o vt it e 46
G.2 ACCELEGRAD-DOG (A-DOG) 46
G.3 Convex experiments L e e e 47
G.4 Non-convex experiments e e 47
G.5 Implementation details Lo 48

19

A Proof for Section 3 (the noiseless setting)

A.1 Proof of Proposition 1
Proof. Define
1
Pt = VO,

t
Qi ="y ajmin{|[Vf (&) - Vf(2)

and

1% gk — mul*}-

Note that in the noiseless setting QT = Q7. However, most of the proof carries over to the noisy
setting as well. Therefore, until a later stage of the proof, we do not use that m; = Vf(%),
gt = Vf(2;) and Q; = @ in the noiseless setting.

Recall the notation 7, ; = \/%t and 7y = ﬁ Algebraic manipulation gives us that for all

k>0 ’

_9 9 t
_ Lo Pk 1
TRt (G, Thp1 — To) < E2 kP llgr — mul|* — E — || wpy1 — yil?

2 = 2k
+ <1 ! >(|I$k+1 — uell® + llzes1 — e |?)
20K 20k
1 2 2
+ 277y’k(HDJ* Uell? = 2 — yrga)

see Lemma 3 for a proof. Therefore, by summing over both sides of the inequality we get that for
allt >0

’f B~ ofllgr — ml?)
Z kO (G, Tkt — Tu) <) s Z kaﬂ |
k=0 k=0 \/zjzo a]’ng - mJ'H2 k= 0

(A) (B)
1~ 1
+ 4F [} +=Y —(di —di.y).
tHZ Pk Tk 2 kzony,k(¢~ i)
©) (D)

Bounding (A): We have Y _, \/ O‘k”gk ml|® < 2\/2210 o2||gr, — mil||?; see Lemma 15 with

=0 ng] m;2

sk = ai|lgr — my||?, and therefore

_9
Tt

i Z agllgr — mal)?
2 B pt.
0 /b0 02llgs —ml

20

Bounding (B): We have that for all £ > 0

(1)
IVf(Er) — VG < B2l 2k — 2l

527:20[2
= %kaﬂ - kaQ
(20:1 fz‘az‘)
(2) 452
< —llmrtr — yrll?,
Qg

where (1) is from the S-smoothness of f, and (2) is because 7xai < 22’5:1 7;a; by Lemma 12 .
Therefore,

|V (@) — VG
432 '

~Nrr1 — x| <

Thus,

t

a2 ||V f(@r) — V()|
2 82 px

|
—Z Tka—i—l —yil? < -
o <Pk k=0

Bounding (C): Define

1 1
Ié{ke{o,l,...,t}:—N 20}.
Pt Nt

Define i, as the k-th smallest index in I, and define ¢|74; ==t + 1. Thus,

1] 1 1 11| 1)
(C) =477 (- =) <A77y, _
* kz::() Piy N i, k‘Z:O p[ikJrlfl] N i,
472 U 1 472 SArr
< 4 4rpy, < — = > < U4 ar? [—] .
Pt o1 \Plig—=1] Mk Pt =Lk Mekir]y

Bounding (D):

t t
1 1 2 d? 1 1 1
- _ d2 o d2 — ~0 _ Ii-‘rl 4= <~ - >d2
2 ; Tyt (F k+1) 277y,0 277y,t 2 kz—o Ty .k My, k—1 k
t

2 2 72
< % _dt+1+dtz<1_ 1)

a 277y,0 277y,t 2 k=0 ﬁy,k ﬁy,kfl

By preforming telescopic summation we obtain

72 2
(D) S dt+1 ~_ dt+1)
277y,t

Let s € argmaxj<; 4 dy,, we ha_/e that Jfﬂ — dfﬂ_ = dz — alt2Jrl = (JS — dt+1) (ds + dt+l) < |lys —
Y|l (ds + de1) < (s + 141) (ds + diy1) < 4T441deqr. Thus,

(D) < 2ft—&:1Jt+1 .
ny,t

21

Bounding (A4) + (B) + (C) + (D): Combining all of the above, we obtain that
¢

1 1
Z (Ghs Thoy1 — Tx) < BTp41 (Tt+1 + dt+1) max
k=0 IOt 77y,t

t—1 ¢ R .
4 4% [1 _ }] _ 3o 2klIVIG@0) — VI
l’

— Lok ek — 852 py,

Therefore, as for any we have that G 5, > Qk_l,

t

2 SN (512
> Pk (gry Trr1 — 3x) < 571 (Pern + dir)y max{ Gy, Qr} — Z akHVf(wg;gkaf(Zk)H :

k=0
Let s > 0 and recall that = = 4/Qr. We get that
¢ 2 . 5 V]2
/ as||IVf(zg) — Vf(Z
Z TLOg gk,xk_,_l — xy) < 1087441 (""t+1 + dt+1 Z k” f(kS)BQ f(Z)ll /Qk
k=0

+ 57411 (Fe1 + dyn) <5\/@ - 28\/@)
+ 5ft+1 (ft+1 + Jt+1) <\ / max{Gyvt, Qt} - S\/@) . (16)

We have that

t o2 AN 2\ [12
108741 (ft+1 + Jt+1) \/@ - Z 0|V (&) — Vi (z)] \/@

2
k=0 85

_ - t 2 . YV f(s 2 _
< 10stuns (et i)/ — 7 RV = s ml’} o,
k=0

Define Bf = of min{||V f (&%) — Vf(Ze)|I? lgr — mel*}, ¢1 = 108741 (Feg1 + dit1), and o = 852
Lemma 14 gives us that for all ¢t > 0

Therefore,

SN2
1087’t+1 T4l +dt+1 \/> Z oIV xtgﬁQ Vi) \/@

< 2(10s7¢41 (41 + dt+1))3/2(8ﬁ)1/2 < 1805% %1 (Frgn + Jt+1)25-

Combining this result with eq. (16) yields that for all ¢ > 0 and s > 0

t
2
D rhan (g w1 — wx) < 1808% 2Py (P + dipn)

k=0
+ 571 (g1 + dig1) (8\/@ - 28\/@)
+ 5741 (Frg1 + dig1) (, [max{Gy+, Qi} — s@>. (17)

22

Lemma 1 gives us that

t

Fae) = F(@2) < 3" T (V (@), i1 —).

= t _
> k=0 TRO%k 1=

Now, by additionally using the fact that in the noiseless setting

Qi =Q: and
t t
> P (VF (k) Thp1 — 24) = > Thtk (G Thp1 — T)
k=0 k=0

we get that

) T ~ _
F(@0) — flz0) <1808 2 B(7 1 + diy1)’
k=0 TkCk

+ 5%@“ + dy11) < max{Gy, Qi} — 5\/@)
k=0"k%k

Finally, by using the fact that Jt+1 < do + 7441 and because fkozi < 22521 7oy for all k > 0
(Lemma 12), we obtain that

) — f(2) < O <s3/25(rt+1 +do)? + (41 + do) [/max{Gy,Q:} — s@h) |

(Cho 7/ee1)”

L]
A.2 Proof of Proposition 2
Proof. For any h > 0 (in this case h = 12), define
cp = hlogi <S+Qt1) and
s
1
P = .
¢ Ct\/ S + Qt
Lemma 3 gives us that, for all t > 0,
e 1 1
Frov (ge, Ty1 — 24) < titptHgt —my|* + (— = >(H$t+1 —y|* + |21 — yea [|?)
2 2pt 277:10,15
1
+ %(Hx* —yell” = [lzs — yera)
From the definitions of p; and 7,4 = 1//Gy < 1/pt—1 we obtain that
1 1 c?
- _ < — 0 1)
S By = 2 pt(Qr — Qr-1);
27

See proof in Lemma 13. Now, because we also have that max{||zi+1 — yell, [|[yi+1 — 1]} <
we get,

ct ?

1
Qﬁyﬂf

_ 9 _
Frae (G, Teg1 — Tu) < 57}2/%04?“% —my||? + (df — d7y).

23

Thus,

2y 1Te0vt (G, Tea1 — x) < iy epead || ge — mul|” + (df — diyy).
Consequentially, by summing the two sides of the inequality, we get that for all ¢ > 0
¢ t

t
QZny KTk (ks Tl — o) <9 Z Pally Pk gk — Ml + Z (di — diyq)
k=0 k=0)

97“t2

<

Qr — Qr—1
+§ di 1)
12 s +
h* =0 (s + Qk)10g3-<7+st) k=0

Lemma 17 gives us that

Qr — Q-1 <1
o (s + Qr)log? (%) -
Therefore, we obtain that
! 972 <
2 iy kTrOk (Gks Thi1 — Tu) < T+ > (df — di).
k=0 k=0

Thus,

U . 972
2> iy aTran (VF(8k), Thpr — T.) < h2 +2 Z Ty Tk (V f(Z) = Ghs T — T4)
k=0 k=0
t

+ Z i)

k=0
Consequentially, as Lemma 4 gives us that

t
Z’F]%kfkak <vf(j7k)7 L4+1 — 1’*> > 0,

k=0
we get that
072 ¢
0<ﬁ+2277yk04k (VI(Zk) — gk, Tht1 — T —I-Z diyq)
= k=0
Therefore, we get that for all t > 0
97 .«
di,; < h2 + QZﬂy,kak (VF(ir) — gr, Thi1 — Tx) + da.

As we are in the noiseless case, and h = 12, we get that for all ¢ > 0

d? a2
i1 < 16 +

1 2

Finally, Lemma 5 now gives us that for all t > 0

di < 2dy and 1 < 4dp.

24

A.3 Proof of Theorem 1
Proof. Define

Imol?+ @)

¢ = 121og? (
X [lmoll?
From Lemma 6, we get that for all £ > 0 the distance between iterates is not large:
27y
max{||ze1 — yell, (|21 — Yo [} < P

Now, we fulfill all the conditions for Proposition 2 and therefore, for all ¢ > 0
Jt < 2dy and 7 < 4dy.
Proposition 1 gives that for all ¢t > 0 and for all s > 0

$32B(Fry1 + do)? + (Fep1 + do) [/ Gyt — S\/@]Jr)
(Cho /7)) '

By using the fact that r; < 4dg, we get that for all ¢ > 0

f(&) = flz) <O (

$3/2Bd3 + do[/Gyr — sV Q1
f(@¢) — f(ze) <O < ’ P [- 2 t]+ : (19)
(X ko Tk /Tes1)
Recall that
T = arg max Z #
t<r o Tt
To show the non-smooth rate, we set s = 0 and obtain
T—1
VGyr < ery| max {aflme]2} +) ofllgr — mal? < erV/T2L? + T3L2 < 20T cr.
= k=0
This result, with eq. (19), gives us that
LdT3/?
fl@r) = flz) <O ———cr | (20)
' (Cheo /i)

To show the smooth rate, setting s = 2¢441 yields

VGyt —5VQt < ¢ (\/ Qi + My — 2/ Qt) < Cpy1 (\/ M; — v/ Qt)-
For some k; < t we have that /My = «y,||my,||. In addition, the smoothness of f implies that

IVF(2)|I? < 28[f(2) — f(=,)] for all z € X. Combining this fact with the triangle inequality gives
us that, in the noiseless setting,

aHthHtH - aHtva(éHt)H < al‘itva(i‘Ht) - vf('él@f)H + aﬁt\/%\/ f(i'mt) - f(x*)

25

Thus,

VM; < /Q1+ 0 /28 fiw,) — flas).

Therefore,

V Gy,t — S/ Qt S Oy \/ 20%_1_16 V f(‘,i’m) - f(x*)
This result, together with eq. (19), give us that for all ¢ > 0, there exist x; < t such as
?ﬁBdQ + TRV, Ct+16d2\/ (Zr,) — fl2)
(Zk 0"’k/7't+1)

Using the previous inequality and Lemma 2 we obtain that for all ¢ > 0 that

f@o—f@QsO(By 2£H>- (21)
(ZZ:O fk/ftﬂ)

Combining the result from eq. (20) and eq. (21) gives
mm{ﬁdo, Ld0T3/2})
T .
(= ork/Tt+1)

f@E) = flz) <O (

f(@r) = flzs) <O ((22)

Lemma 16 gives us that

E)””“> Q%Jgﬁa‘g'

Thus, if T > 2log, (77 /7c) then

1 ’FT)>
= —— < O lo .
Y ko T/ Tts1 (g+< Te

Therefore, from eq. (22), we obtain

. 2 3/2 _
f@ﬁ—f@0§0<mmw%émm }%bﬁ(fﬁ>- 23)

We have that

2
+ Q71
o < O 10 2 (||m0| >)
r= <g+ ENE

(i)) T3 min{Ady, L}) >) min{3d3, Ldo}
<OO%+Q+ wvicore)) SO\ M T e e))

due to (i) the noiseless setting and f being S-smooth and L-Lipschitz, and (i7) convexity, which
implies f(xo) — f(zx) < do||Vf(20)|| Finally, from eq. (23), we obtain

- min{B63, LAt} (il L} | (o
f(@r) f(w*)SO< T 1+Tf(x0)_f($*) log+<r€> . (29

Finally, for 7' < 2log (1 /re) the theorem holds trivially since f(i;) — f(z4) < min{Bd?, Ld }
and d; < 2dy by Proposition 4. Therefore,

min{Bd2, Ld,
f(@r) — f(zx) < O (min{Bdj, Ldo}) < O (w}lg’Ld()}logi(fT/n)>)

and so the bound Equation (24) holds in all cases, concluding the proof. O

26

B Proofs for Section 4 (the stochastic setting)

B.1 Proof of Proposition 3
Proof. Define

12 gk — mu?}-

t
Q=Y _agmin{||Vf (&) — Vf(2)
k=0

Our proof continues from eq. (17) in the proof Proposition 1, which also holds for stochastic
gradients.

t
_ _ _ 7 2
ZTk:ak (Gr> Thr1 — Ta) < 1805% 2741 (Pt + dis1) B

k=0
+ 5741 (Feg1 + deg1) (8\/ Qr — 251/ Qt)
+ 5741 (Ft+1 + CZt+1) (\/ max{Gy i, Qi} — sv/ Qt)-
Forall k>0

lgi = mill”> < 2V f (@) — VFG)I?+ 2l (gr — V(@) — (mie — V()]
<2min{(|Vf (@) — VLG llge — mill®} + 4llme — VGO + 4llge — V(@)

Thus, for all £ >0
gk — mul|* < 2minf{ |V £(@x) — VG2, lgx — mul®} + 4llme — VFGE))? + 4llge — V F ()]
Multiplying by ai, summing and recalling that ay < k + 1 implies Q; < 20Q; + 4(t + 1)3V;, where

Vi = H% ZZZO(Hgt — VF(@)|? + ||me — Vf(2)]?) is the empirical variance. Substituting into
eq. (17), we get that

t
_ _ N2
E TROk (Jhs Thyl — Tx) < 18083/27’t+1 (Tt+1 + dt+1) B
k=0

+ 5711 (Feg1 + dig1) (\/ max{Gy,, Qt} — sv/ Qt)
+ 1087441 (Feg1 + dieg1)V (E+ 1)3V. (25)

Lemma 8 gives us that with probability of at least 1 —5—]P[ET_1 > EB], forallt € {0,1,...,T — 1},

t
> T (VF(Er) = g Thar — T

t
< SQtTtdt+l\J 01415 ZHVf(@k) — gkl + (6141,5B)%.
k=0

k=0

27

Using the previous equality and the definition of V; we obtain that

t
> e (VF(#r), wrs1 —)

k=0

|
MW

t
o0t (i That —) + > Ty (VF(E8) = G Thp1 —)
k=0

B
=l

0

< TLOg <gk, Tht1 — $*> + SatftCZH_l \/(t + 1)9t+17§V;5 + (0t+1,6%)2- (26)
0

Lemma 1 gives us that

i

¢
1
f@) = flan) < ——— D o (Vf(@k), Thg1 — @) -
> om0 THOK kzzo
By combining the above inequality with eq. (25) and eq. (26), we obtain

. T ~ _
Fl@n) = fla,) < 1808%2 - B(Fip + dipr)”
k=0 TkQk

+ 5ztrt+;a(ft+1 + di11) <\/ max{Gy, Q¢ } — sv/ Qt)
k=0"k%k

r _
F10(1 4 8) = (Frg1 + diga) \/(t +1)3V; + (0,415B)°.
2 k=0 TO%

Now, as Lemma 12 gives us that 7;a? < 2 Z};:o FrQyp, we obtain that

) (1) _
F@r) — flzs) < 360s%2 . Fk/ﬁﬂ)zﬁ(rtﬂ + dt+1)2

+10 > ; P (Fes1 + diga) (W - 3\/@>
k=0"k/Tt+1

1 _
+20 t L 9 (Ft—kl + dt—i—l) \/(t + 1)3‘/;5 + (9t+175%)2.
(X ko Th/Tes1)
Finally, because that dis1 < do + Fip1, we get that for any B > 0 with probability of at least
1 —9 —P[br_1 > B] we have that for all ¢ < T and for any number s > 0

(14 8) (e + do)y/30,5Vi + (10,,5%8)°
_ 2
(22:0 "”k/TtH)

53/25(ﬂ+1+d0)2+(ft+1+d0) [w /max{Gy,,Qt}—s Qt] .

(X0 771c/ft+1)2
Proposition 1. O

(@) — f(ze) <O | RHS,q 4y +

where RHS,, (1) = is the error term appearing in

B.2 Proof of Proposition 4

Proof. The proof continues from eq. (18) in the proof of Proposition 2, which also holds for stochas-
tic gradients. Substituting A = 400 in eq. (18) gives, for all ¢ > 0,

972
dt+1 < 4062 + 2 Z Ny kO Vf(azk) Ok, Tyl — l‘*> + d(2)

28

Now, Lemma 9 gives us that with probability at least 1 — 6, for all t < T

t

. 120,15 -
Z ey (g — VI (@1), Trar — 24) | < oo S Fydy
1200415, _ _ 12 3\ 9 12
< : do) < — (14 = 2 Fdo.
S 1008y, e Tedo) < 356 (1+ gag)i+ gpgTedo
Therefore,
8172 24 24 2 Fudy
B < b @2 T mdy+ &< L+ 22,
1= g002 T a00"t Tagot 0 TS g T Ty T

Thus, with probability of at least 1 —§, for all t < T
1 \2
di,, < (do + 4rt> .
Finally, Lemma 5 gives us that with probability of at least 1 — ¢ for all t < T

dt < 2d0 and Tt < 4d0

O
B.3 Proof of Theorem 2
Proof. Recall the notation
t —
G= 2025 —mull? , Qui= S max{gn, @i} and py = 8(t +1)%7,
k=0
and that our step sizes are of the form (2) with
Gyi = ¢ lanM{Hmo||2 +po +pt + G + Qr—1, My},
where o
-, Pt G+ Qi
& = 40007 5 log? <1 T >
t oo [Imoll* + po
We begin by verifying the conditions of Proposition 4 with s = ||mg]|? + po, where condition

(7v) holds by construction. By Assumption 3 we have
lge = 3el* < 2llge = VI (@I + 2/1ge — V(@) [|* < 465
Therefore, since t + 1 > a4, we have
G +pt > af (2)1ge — mil|? + 2[|gr — §tH2) > a?llge — mil|? = q,

and consequently
Gt +pt + Q-1 > Q1.
Defining

0,
= 40007 slog? (14 — 28
& = 40065 °g+(T ol ¥ 50)

29

we conclude that
Gyt > ¢} maX{HmoH2 +po + Qi, My} > & ([lmoll* + po + Q1)
so that condition (i) of Proposition 4 holds. Next, since
Gy > ¢f max{Q, My} > cfai max{|lge — mql, |me*},
Lemma 6 guarantees condition (i7) of Proposition 4. Finally, we note that
pr 2 8ai max{|lge — V f(20)lI%, 1ge — V.f (@)%}

and
pe+ @ = of (2llme — Gl + 2015 — V(@))1?) > aflme — Vf (&)

Therefore, as /Gy > ¢/t + @&, condition (i) of Proposition 4 holds.
As all the conditions for Proposition 4 hold, with probability of at least 1 — §, for all £ > 0

Jt S 2d0 and T+ S 4d0.

Recalling that b, := max,. |, ||<2d,{0()}, this also implies that P[op_; > b,] < 4.

We now combine the conclusions of Proposition 4 with Proposition 1 to obtain a suboptimality
bound for U-DoG. Substituting P(77 < 4do) < ¢ and P[by_1 > b,] < 4 into Proposition 3 we get
that, with probability at least 1 — 39, for all t < T and s > 0,

s3/2Bd2 + do[/Gy s\ﬁ} +(1+s) do\/t39t+1 sVi 4 (t0;41564)°
(Zk:o 7’k/rt+1)2

f@E) = flz) <O

(27)

To simplify Gy in the bound above, we invoke Lemma 10 which gives that, with probability
at least 1 — 0 — P[by_q > b,] >1—24, forall t < T,

Qr <5Q¢ +80(t+ 1 \/ Orr1,6Ve +2(t + 1)° 011,662,

and hence

VG < ét\/Qt +2M; + 2p = O(ét@+ét\/ﬁt+ éteT,g\/m)_

Combining this with the bound (27) and replacing s with sé;\/3, we get that with probability at
least 1 — 50, for all t < T and s > 0,

302607 3 + e ([(1 = 9)VQ1 + VO], + (1+ 5)07.5\/BV; + 1262

f(@) = f(ze) <O
(ZZ:O ’Fk/ftﬂ)2

(28)

The remainder of the proof parallels the proof of Theorem 1, where we specialize our bound to
the Lipschitz and smooth cases by choosing different values of s. For the Lipschitz case, we use the
facts that

Q< 4> (IVF@EI+ IV LI + llge — V@) + lme — VF (Z)lI?) = OLPT? + ViT?)
k<T

30

Q¢ = O(L?T3) and M; < O(L?T?) and (under the event d < 2do)

My < masc{ 202 (|91 ()P + g — VFGI)} = O(LPT? + 02T2),

giving the suboptimality bound. Substituting these expression and s = 0 into (28) we get, for all
t<T,

F(8) — flo) <O (ét LdoT?? + dOHT,(;,/T?’V:Qr ¥ sz2> | (29)
(Xheo P/ Te41)

For the smooth case and any ¢ < T, let k; <t be such that For some x; <t we have that

\% M; = O‘HthHtH'

The smoothness of f implies that |V f(2)||* < 28[f(z) — f(x4)] for all z € X. Combining this fact
with the triangle inequality gives us that

amHmmH < Oéﬁt”vf(iﬂt) - Vf(im)H + aﬁthﬁt - Vf@m)” + aﬂt\/ﬁ\/ f(ilit) - f(l‘*)
and therefore,

VM; < Qi+ V({E+ 13V 4 ey V28V [(Ery) — f 1)

Substituting into eq. (28) and taking s = 2, we get, for all t < T,

EPBA2 + e4dobr 57/ TV + T202 + /2, BN/ F(Bny) — [(02)
— 2
(ZZ:O Tr/Te+1)
Applying Lemma 2 and noting that 075 < ¢; simplifies the bound to
é2.8d2 + ex0r sdor/ T3V + T2b2 30
2 : (30)
(> ko T/ T41)

Combining the bounds eq. (29) and eq. (30) and noting that 675 < ¢7, we conclude that, with
probability at least 1 — 56, for all ¢t < T',

f@) = flz) <O

f(i:t)—f(fv*)§0<

“min{Bd3, LdoT*/?} + do/T?Vp—1 + T2bz>

(Cheo P/ Te1)?
T

For 7 = arg max, Zz‘gt e Lemma 16 gives us that

f(@) = f(ze) <O (c%

T

e)

k=0

Thus, for T' > 2log, (7 /rc) we get (under the event 7p < 4dy)

; 2 do\ min{Bd3, LdoT*?} + do/T?Vir_1 + T?03
f(@7) = f(ze) <O (C’% log?. <7“0> . {5dg }T2 i 7

€

31

which establishes the theorem, since

ir 20 (bgi <1 + WQM)) <0 (mi <1 LT TS|V () vmwu?))

IVf(20)I1? IIVf(Zc>)||2
31,2 3 (41) T352d2 T3 : d3 Ld2
SO<10g3<1+T b2+ T mm{BdO,L})) 90 <1ogi<1+ 22 + T3 min{ 8d3, 0}))

IV £(Z)l? fzo) = f(as)

5 budo + min{Bd3, Ldo }
¢ (10g+ (1 e =gy)

where (i) is because |V £(20)|> < |V £(20) — mo + mol|? < 2||mo|? + po, and (i4) is from convexity:
f@o) = f(@e) < dol[V (20|

Finally, when T' < 2log, (77/r¢) the required bound is immediate from problem geometry, as
explained at the end of the proof of Theorem 1. O

B.4 Proof of Corollary 1
Proof. Define

f=_ 0
ETB(t+1)2

A black-box reduction from sub-Gaussian to bounded stochastic gradient (Lemma 18) shows that
at each iteration ¢, with probability at least 1 — &}, a call to a o>-sub-Gaussian subgradient oracle
produces an identical result to a call to an alternative stochastic gradient that is bounded by
304/log(3/4}).

We apply Theorem 2 to U-D0OG with the alternative, bounded stochastic gradient oracle. Thus,
for this setting, with probability at least 1 — 568, we have dr < 2dy, 71 < 4dy, and the suboptimality
bound (15) holds for b, = o.gr_1,5. To conclude the proof we use Lemma 18 to show that the
algorithm described above produces output different than U-DOG with the original sub-Gaussian
oracle as at most

[e.9]

> 38 1 3
325{53 5 Zt?* 5- 6
t=0

where the factor of 3 comes from the fact that every U-DOG iteration involves 3 stochastic gradient
queries. =

B.5 Proof of Corollary 2

Proof. A mini-batch of B gradient oracle results, each with noise bounded by L, is a %—sub—
Gaussian (see Lemma 11), and we can therefore apply Corollary 1 with o7 = 2—5. Moreover,

reusing the sub-Gaussian-to-bounded reduction in the proof of Corollary 1 (Appendix B.4) we get
that, with probability at least 1 — 64,

VVr < \an

holds in addition to the suboptimality bound given by Corollary 1. Substituting the above bound
on /Vr along with b, < \@%Qﬁ concludes the proof. O

32

C Suboptimality lemmas

C.1 Weighted regret to suboptimality conversion (Lemma 1)

The following lemma is a straightforward generalization of Lemma 1 from Kavis et al. [28].

Lemma 1 (Kavis et al. [28]). For any sequence of positive numbers wy, w1, we, ..., define

R Zk owk$k+1
Ty = =
Zk 0%k
We have that for any T >0

Flaro) — f(z) < Tf S (V) —).

Ym0 Wt t=o
Proof. For any t > 0 we have that

Wt

Wt

t t—1
N N _n Wk . Wk .
Wi AV f(2¢), Te41 — o) = wi <Vf(37t)’ Zk;f iy — =h=0"Rg,) — x*>

t t—1
N —0WEk , —o0Wk /o
V1 (dy), Zk;ok(xt —) — M(xt—l _ x*)>
t

Wt

t—1

t
= wp (VF(&e), & — 3.) — Zwk (VF(@0), 811 —)
k=0

t—1
= w (Vf(21), T4 — m4) + Zwk (Vf(Z4), Tt — T4-1) -
k=0
By using the convexity of f, we get
w (Vf(2e), 241 — 24) 2 wi(f(2e) — flze)) + Zwk f(&i-1))- (31)
Therefore, for any T > 0
T—1 T-1 T—1t-1
Z Wi (Vf(24), e — i) > Y wilf (7)) + wi(f (@) — f(#-1))
t=0 t=0 t=0 k=0
T-1 T—2 T—1
=D wi(f(&) — fze)) + wi(f(2) = f(Z1-1))
t=0 k=0 t=k+1
By performing a telescopic summation, we obtain
T-1 T-1 T—2
Z we (V[(&), 1 — 2x) > Z we(f (@) — f(2a)) + Z wi(f(Zr-1) — f(24))
t=0 t=0 t_;_Q
=wr1(f(@r-1) = f(z)) +) wil(f(@e) — f(@e) + f(@r-1) — f(24))
T-1 =
= 3wl f(er—1) - £(z2)).
t=0
Dividing both sides by ZtT:_Ol w; concludes the proof. O

33

C.2 Inductive suboptimality bound (Lemma 2)

Lemma 2. Let sg, S1,...,87—1 and hg, h1, ..., hr_1 be non-negative non-decreasing sequences. Let
b > 1 such that Tr41/7¢ < b for any t € {0,1,2..., T —1}. If for all t € {0,1,2...,

exist ¢ € {0,1,2...,t} such that

Qe /StN [(Zy) 95* —l—ht

f(@e) — f(za) <
(Zk ork/TtJrl)

then for all t € {0,1,2...,T — 1} we have that

4b2(8t + ht)

t (22:0 fk/ft+1)2

Proof. We prove by induction that
4b2($t + ht)
o 2"
(ZZ:O % /Ter1)

We will only use the induction assumption for the case were x; < t.

f(i't) - f(l'*) <

If k; =t: We have that

antf\/ xnt $* + hy
(Zk ork/TtJrl)

f(-%t) - f(x*) <

Tf+1 /* / l‘,‘% LE* ht
= 2
Yk Th/Tt41 (ZZ:O r/Tee1)

by/st \/ﬁ hy

5.
> ko Th/T41 (ZZ:O e/ Te41)

Thus,
f(&) = f(as) — OB) = Tle) ¢ }_lt 2"
Zk 07"k:/7“t+1 (Zkzo rk/rt+1)
If
F@) = f@) _ o bE TG — @)
9 > f(l‘t) f({L‘*) 22:0 Fk/ft—f—l)
then
. 2hy
f(@e) — f(2i) < :
t (Sho/7nn)”
Otherwise,

[= f(a) _ b5/l = Fe)

2 D

34

T — 1} there

Therefore,
2b./5¢
f@) = fla) €
’ Zizo T/Ti1
Consequentially,
4b25t

f(i't) - f(x*) < .
(Cho 7/ee1)”

In either case, we obtain that

4b2(8t + ht)

f(i‘t) - f(l‘*) < .
(> k=0 fk/ft+1)2

If k; <t: We assume by induction that

4% (81, + i,)

Tr,) — f(ze) < .
Flnd = J) (ko P/ P’

Therefore,
_ Q
/30 [(@) = f(@2) < 20V/50V 500 + Iy e
k=0 Tk/rﬁt+1
< 2™ 5o+ I
Tt
< 2()2(815 + ht)
Thus,

R 2b2(8t + ht) + hy
f(xt) - f($*) <
(ZZ:O fk/ﬁﬂ)z
4b2(8t + ht)
; (ZZ:O 77k/ﬁt+1)2

Finalizing the induction: For ¢t =0 we have k; = 0 = t. For the case k; =t we did not use the
induction assumption, and therefore we have the base of the induction:

462(80 + ho)
(Fo/m)*
Thus, by induction we get that for all ¢t € {0,1,2,...,7 — 1},

f(Zo) = flay) <

4b2(5t + ht)

(@) = flze) < .
(ZZ:O 77k/77t+1)2

35

C.3 General regret bound (Lemma 3)

The following lemma is inspired by the regret analysis of UNIXGRAD [28].

Lemma 3. Using Algorithm 1, eq. (2) and eq. (3), for any t > 0, ps > 0, we have that

=2 2
_ (e’ 1
(7877 <gt733t+1 - SU*> < TPt Hgt - mt||2 - *2 ||3Ut+1 - yt||2
Pt
Ty (lzesr = well® + lwes — yera|l?)
20 277:” t+ t t+ t+

2 (e = 2all® = Ngesr — z?).

Proof. We have

Teov (e, Teg1 — Ty)

= T (Gt — Mg, Teg1 — Yeg1) + Troe (M, Tepr — Yeg1) + Teoe (Ge, Y1 — T - (32)

In addition
7
Tea (gr — M, Tep1 — Yer1) < Troallge — mal|vee1 — Y|

i) T
< PLTe0y
2

—~
=

—~

1
lge — me|l® + CYR lzer1 — yesa (33)
Pt

where (7) is from Holder’s Inequality and (i7) is due to Young’s Inequality.

For the Euclidean Bregman divergence Dgr(x,y) = %Hx — y||* we have that the update rule
i1 = Proji(ye — aunzemy) = Proji(yr — Frounyemy) is equivalent to the update rule x¢y; =
1

arg minxelc{ﬂat (x,mi) + =—Dg(z, yt)} Therefore, from the optimality of x:11 we get

'f]z,t
_ 1
e (M, i1 — Yey1) < 7 (VaDR(T141,Yt), i1 — Yey1)
Tt
1
=3 (Dr(Yt+1,9t) — DrR(Tt+1,) — DR(Yt+1, Tt 41))- (34)
z,t
Similarly, y;11 = arg minye,c{ftoét (Y, 9¢) + ﬁitDR(%yt)}- Therefore, from the optimality of
Yt+1 we get
_ 1
(187 <gt, Yt+1 — CU*> =7 <v:1:DR(yt+1v yt), Ty — yt+1>
y7t
1
= H(DR(!E*,%) - DR(Z/tH,?Jt) - DR(ZU*,ytH))- (35)
y7

36

By combining egs. (33), (34) and (35) into eq. (32) we obtain that

_ 2ol p 1
Teo (e, Tegp1 — Tu) < tittHgt mt”2 + ﬁ”ﬂﬁtﬂ - yt+1H2
1
+ oF (||yt+1 - yt|| @1 — yt||2 — |41 — 5Ut+1H2)
Nzt
1
+ 2 (e = well® = lyerr = wel® = e — yesall?)
7o 1
= TPy |7 — e — wl?
+ (557~ 5) Qloa = wlP + v = eaalP)
2p¢ 277a:,t
+—Ulzw = vell” = |2 —ye1[|7) + | 52— — 5= | llye+1 — we]]”-
2 (lzs = well® = Nz — yesall?) T Y41 — el

Since 7yt < 7)z,¢, We may drop the final term in the above display, completing the proof.

D Iterate stability lemmas

D.1 A weighted regret bound (Lemma 4)

Lemma 4. For any sequence of positive numbers wg,w1,ws, ..., define
N WETk L
5 Shoowntns
> ko Wh
Let ng,m1, M2, ... be a non-increasing sequence of positive numbers. We have that for any T > 0,
T-1

winy (V f(2¢), 2441 — 24) > 0.
—0

~

Proof. Define

flx) = (@) = f(s).

We start from eq. (31) inside the proof of Lemma 1, which says that for all ¢ > 0

wi (Vf(2r), xe41 — o) > wi(f(2e) — fae)) + Zwk — f(Ze-1)).

37

Multiplying each side by 7; and summing, we obtain

T_1 T—1 T—1t—1
D i (VF(@e), w1 —) > Y wiie(f(#0) — f(4)) + wile (f (£1) = f(Z-1))
t=0 t=0 =0 k=0
T-1 ~ T-1t-1 N B
= > wiief @) + > wniie(F(@) = (@)
t=0 t=0 k=0
(%) T-1 ~ —1t-1 B B
> wiif @)+ Y Y w (Utf(l’t) - "7t—1f($t—1)>
=0 =0 k=
= D wiilnf (1) + Wk <ﬁtf(3?t) - nt—lf(xt—1)>7
t=0 k=0 t=k+1

where () is because that f(&;_1) > 0 and 7;_1 > 7 > 0.
We can now perform a telescopic summation and obtain

T-1 T-1 T—2
Zwtﬁt (Vf(21), 2441 —) > Z weii f (&) + wt (ﬁT—lf(i'T—l) - ﬁtf(@))
t=0 t=0 t=0

T—2
=wrafr_1f(@r_1) +) w (ﬁtf(i“t) + i1 f (1) — ﬁtf(it))

7T
|
— O

= wr it f@r_1)+ > wilir_1f(Er_1).
1

~~
Il

Thus, because f(i7_1) > 0, we obtain that

T-1

> wiiy (V (&), w41 — 24) 2 0.
t=0

D.2 Inductive stability bound (Lemma 5)

Lemma 5. Ifr. =rg < dgy, and for all t > 1 we have that

T
loe = ill < = and
1 2
di < (do+ 47’t1) ;

then for allt > 0 we get that
dt < 2d0 and Tt < 4d0

Proof. We prove this lemma by induction. The basis of the induction is that for t = 0 we get that
do < 2d0 and To < dg < 4d0. B
For any t > 1, we assume that d;_1 < 2dg and 71 < 4dy. Thus,

1
dy < do + thfl < 2dp.

38

Also,
lye = woll < llye — zull + llwo — 2]l = di 4 do < 3d.
In addition,

[z = zoll < llye — oll + [l — el

(%) Fr_
< 3dy + tTl
< 4dy.

“t. As aresult,

where (x) is because ||z — y|| <
di < 2dp and 1 < 4dp.
Finally, by induction, we get that for all ¢ > 0
di < 2dy and 1 < 4dp.

D.3 Single-step iterate stability (Lemma 6)

Lemma 6. Let ¢ be a positve number. Using Algorithm 1, for any t > 0, if g < m,

Tt
Tyt < catllge—ma]] and Tyt < Nt then

_ <t
ze+1 — yell < .

2r¢

Yer1 — yell < —

C

27

|lzir1 — yega] < 70

2
Tyl < Tt<1 + C).

Proof. First, by definition of the iterates and the fact that K is convex (and projection onto a closed
convex set is nonexpansive) we have

. Ty
[2e+1 = yell = [Projic (v — cunaemu) — yell < cumellmal| < = (36)
Second, by definition of the iterates and the fact that K is convex we also have

Y1 — yell = [Projic(ye — caumy,ege) — yell < aumyell gell
27,
<ty allge —]| + cumy el < f (37)

Third, by definition of the iterates, the fact that K is convex, the fact n,; < 1, ¢, and the assumed
upper bounds on 7, ; and 7, in the premise of this lemma we have

zt11 — yer1ll = [[Projic(ye — caune,emi) — Projic(ye — cuny.19:)||
< ag||ne,eme — nyegell < cunyellge — mell + (e — nye)lmel]
2r;
< amyillge — mel| + aunellmel| < —

39

Finally,

rep1 < v A max(||zepr — vell, |lverr — vell)-

Therefore, using eq. (36) and eq. (37) we obtain

2
Tey1 = max(7y, req1) < 7+ max(||ver — yell, e — well) <7l 1 +o

E Concentration bounds

E.1 An empirical-Bernstein-type time uniform concentration bound (Lemma 7)

Lemma 7 (From Ivgi et al. [25]). Let S be the set of nonnegative and nondecreasing sequences.
Let C, € Fi_1 and let Xy be a martingale difference sequence adapted to Fy such that | X < Cy
with probability 1 for all t. Then, for all § € (0,1), ¢ > 0, and X; € Fi_1 such that |X;| < Cy with
probability 1,

t
~ N\ 2
Pl 3t<T,3{y}2, €8 Xi| > 8yiy |05 > (XZ» - Xz-> + 2602,

=1

¢
Zyi
i=1
<O0+PEH<T:Ci>c).

E.2 Concentration bound for suboptimally proof (Lemma 8)

Lemma 8. Let B > 0 and § € (0,1). In the bounded noise setting (Assumption 3), using
Algorithm 1 and eq. (12), with probability of at least 1 — § — IP’[[JT_l > ‘B} we get that for all
te€{0,1,...,T — 1} then

t

< 8ayTydyy1y| Or16 ZHVf(fEk) = 912 + (0r41.5%B)*.

t
> P (VI (k) = gy Tryr — T4
k=0 k=0

Proof. For k € {0,1,...,T — 1} define the random variables:

_ 7 R X — X
Yy = appdiy1, and X = <Vf(96k) — Gk, k}l*> .
k1

From these definitions we get
¢ t
> ViXp = Teap (VF(Ek) = grs Tha1 — Ts)

and that {Yk}g:_ol is a non-decreasing sequence of non-negative numbers. Therefore, as | X3| < by,
with probability of 1, Lemma 7 gives us that

t

Z Vi X

k=0

t
> 8Yi, | Or41,5 Z(Xk — 0)2 + (9t+1,6%)2 <6d+ P[ET_;[> %]
k=0

PlIt<T :

40

Therefore, by using the Cauchy—Schwarz inequality, we obtain that, with probability of at least
1—0—P[br_1 >B], forallte€{0,1,...,T -1}

t

< Saufidii1y| Or1s D NIV F(Ek) — gkll® + (Ors1,5%B)%.
k=0

t
> T (VF(Ek) = g Thg1 — T
k=0

E.3 Concentration bound for iterate stability proof (Lemma 9)

Lemma 9. Let 7, be such that, for some c,s > 0 we have

> e o+ Qutog (S, 0l 9500 -l V1) ~ gl .

ny,t

If for allt > 0 we have that 1y = 741y 15 independent of g; given xo,...,x¢, then, with probability
of at least 1 — 9, for all t > 0,

t

N 120,016 -
>ty (gk = VF(ER), Thar — Ta)| € ——Cidy 1.
k=0
Proof. Define
_ L Tl — T
Xi = e (90~ V(a0 ZHI
dit1
Xt = Oétf]%t <Vf(SACt) — My, -iUtH—x*> and
diy1
Y = ridiqa.

The assumption ﬁ;,t > capmax{||Vf(z¢) — m|l, ||lge — Vf(Z¢)||} implies that max{|Xt|, |Xt|} <i

Thus, Lemma 7 gives us that

t

R

k=0

t
8ydy i1, | 0 X - %) 4 2 >1-0
< STt t+1,6z k k +CQ t+1,6 | = .
k=0

P(vte{0,1,..} :

Furthermore, we have

t 9 t x . 2 t
O ~ k+1 — T ~
S(xe = %) = 3 (auir (o= N) < il —
k= k=0

d,
P . t+1

® 1§ oFllgr — ma)® @) 1
<3

t 2 _ 2 = 72)
P (3 + 22:0 aingk _ mkHz) logi (SJer:o @;;Hgk |) c

where (i) follows from the assumption that =~ > ¢v/s + @ log 4 (#) and the definition of @,

Tyt —
and (i) is a direct result of Lemma 17 with aj = s + 3_t_o a2 llgr — mx||>. In addition, we have
that

YiXe = aunyi (ge — Vf(81), 20101 — 24) -

41

Therefore, with probability of at least 1 — ¢, for all ¢ > 0 we have that

t

Z arnyk (gr — V[(T1), Try1 — 24)
k=0

s Oriis i
< 8rediy CQ’ + c2,

126 -
< 120015 Py,

E.4 Relating Q; to Q; (Lemma 10)

Lemma 10. Let B > 0 and 0 € (0,1). In the bounded noise setting (Assumption 3), using
Algorithm 1 and the step sizes (14), with probability of at least 1 — § —]P’[bT,l > %] we get that,
forallt € {0,1,...,T — 1},

Q: < 5Q; + 80(t + 1) /01 15Vi + 2(t +1)%0, 11 5B

Proof. For all kK > 0 we have

Gk — mul|? < 2llge — mul|® + 2/|gx — Gel1?
< 2||gi, — mil® + 4llge — V£ @0)|I° + 4Gk — V(@)

Therefore, since oy, < k + 1,

t t t
Y ailgs —mil* <2 aillge — mal* +8Y (k+1)*|gx — V(@)
k=0 k=0 k=0
t

+4) (k+1)%(lge — V@) = llge — VI (@R)]7)- (38)
k=0

We now bound 37 _(k + 1)*(|ge — V£ (@r)||> = [lge — V£ (2x)]|?). Define
Xe= (g = V@) = g = V(@)
X =g — Vf(&)|* and
V= (t+1)%

We have that for all ¢+ > 0 then |X;| < b? and |X;| < b7 with probability 1. Therefore, Lemma 7
gives us that

t

PR

k=0
> 1*5*P(ET,1 > %)

t

A\ 2 9
< 8Yyy |Orr16) (Xk - Xk) +01 5B
k=0

P(Vte{0,1,....,T—1} :

Consequentially, by combining this result with eq. (38), we get that with probability at least
1—0—P(bp_1 > B) that for all t € {0,1,...,T — 1} we have that

t t t
D akllge —mel® <2 aillgr —mul® + 400t + 1)*Vberrs Y llge — VF(@n)|1? + (+1)%0r41,4%B%.
k=0 k=0 k=0

42

Substituting into the above equation the definition of @; and V; given in eq. (1) and eq. (11),
respectively, and recalling the definition of @Q); given in eq. (13)

t t
Q=Y afmax{|lgr — mal*, 2/|G — mi|®} < Qe +2 afllgk — mul
k=0 k=0
completes the proof.]

E.5 Concentration inequality for bounded random vectors (Lemma 11)

Lemma 11 (Howard et al. [23]). For T € N, let {Ui},cr) be a sequence of mean zero random
vectors in R? with |Uy|| < ¢ almost surely. Then

T 2
]P’(ZUt 2:13) < 2exp <2ZQT>'
t=1

Proof. This result follows from Howard et al. [23, Corollary 10.a] with Y; = >34 _, Uy, ¥(-) = | - ||,

¢t = c and m = c*T. The selection of W(:) = || - || yields D, = 1 (see discussion preceding [23,
2

Corollary 10.a]). Setting ¢; = ¢ yields V; = c*t. Hence %(VT —m) < 0 and Howard et al. [23,

eq. (4.28)] gives the desired result. O

F Auxiliary lemmas

F.1 The growth rate of), 7.y, (Lemma 12)

We note that in accelerated optimization algorithms we normally have that oy = ©(t). Even though
this is not the case for U-DOG, oy is roughly similar to t. First, it is easy to see that 1 < ay < t.
Secondly, the running sum of 7;a; grows roughly quadratically. This is shown in the following
lemma, in which we replace a; and #; with a; and s;, respectively

Lemma 12. Let sg,s1,...,8 be a non-decreasing sequence of positive numbers. Define ap =
k S;
Zz‘:o i’ then

t

sta? <2 g Ska.
k=0

Proof. We have

(t —k+ 1>3k-

»
&

Q

o~

Il

| —
]~
-~
®

>

)

Y

|

| o
)

>

»

|

@ | =
-~
w
N
A
)
-
)

>
-
» | ®
o~ -~
IA
[\
-~

43

F.2 Discrete derivative lemma (Lemma 13)

Lemma 13. Let ¢ be a positive number, and let sg, s1,S2,... be a sequence of positive numbers.
For every t > 0 define

1
Pt = 715
/i
We have that for every t > 0
11,
—— — — S CPi41St41-
Pi+1 Pt
Proof. For every t > 0 we have that
i+l t t+1 t+1 t 1 1 1
S ST 9 (1) SN [pP) ISt b G B
k=0 k=0 k=0 k=0 k=0 CoPt+1 \ Pt+1 Pt
Thus,
1 1
—— — — S PS4
Pt+1 Pt

F.3 Discrete integral lemma (Lemma 14)

Lemma 14. For any positive numbers ci,ca, for any t > 0, and for any sequence of non-negative
numbers By, B1, Ba, ..., By we have that

Proof. Define

Lemma 15 gives us that

Therefore, we obtain

Define

1
K= max[{t €{0,1,...,t} : 2cinBs —
C2

> 0} U {—1}].

)

B

K
2
cnprBE =1y < 2¢

=0\ 250 B

where (x) is because of Lemma 15. From the definition of x, we obtain that

1

C2MB,k

C1MB,x >

Thus,

k

2c1 3/2 1/2

E B2 S 7]]_{14‘20} S 201/ C2/ .
J B,k
=0 :

F.4 Additional lemmas from prior work

Lemma 15 (e.g., Levy et al. [33]). For any k > 0 and for any sequence on non-negative numbers
80,81, 82, . .., Sk the following holds:

Si

<2
\/ Z;:O Sj
Lemma 16 (Ivgi et al. [25, Lemma 3]). Let sg, s1,...,s7 be a positive nondecreasing sequence.

Then
S; 1 T
max - > - —1).
t<T “= sy ~ e \logy (s7/s0)

Lemma 17 (Ivgi et al. [25, Lemma 6]). Let a_1,a9,a1,...,a; be a non-decreasing sequence of
non-negative numbers, then
¢
Z Ak — Qg1 <1.

=0 ag logi(ak/a_l)

Lemma 18 (Attia and Koren [3, Lemma 15]). Let X be a o?(x)-sub-Gaussian. For and & € (0,1)
here exist a random variable X such that:

1. X is zero-mean: EX = 0.
2. X is equal to X w.h.p:]P’(X = X) >1-9.

3. X is bounded with probability 1: IP’(HXH = 30\/10g(4/5)> =1.

45

G Experimental details

G.1 U-DoG step sizes
In the experiments we use the following step sizes for U-D0oG

Tt d Tt
Nt = ana Tyt = >
’ \/maX{Qtfla Mt} Y \V/ maX{Qt7 Mt}

with 7, @, and M; as defined in Section 2. This step size is similar to the choice in eq. (10),
which enjoys proven stability in the noiseless case, except we replace the logarithmic factor in the
denominator with 1; preliminary experiments indicated 1 was the smallest value for which the
algorithm was stable in practice. This difference between practical and theoretical algorithms is
analogous to the difference between DOG and its theoretically stable variant T-DOG [25]. However,
we maintain the maximization with M; in the denominator, mainly in order to ensure that 7, ; and
7Nyt are not too large early in the training. As with DOG, the additional step size adjustments
necessary for the stochastic setting (given in eq. (14)) do not appear to be useful in practical
settings.

G.2 AcceleGrad-DoG (A-DoG)

While U-DOG enjoys strong theoretical guarantees, it requires an extra-gradient computation at
each step, which can be expensive in practice. To address this, we propose an alternative algorithm,
A-DoG, which combines ACCELEGRAD [33] and DOG. To complete the combination we set a; in
the same way as it is calculated in U-DOG (algorithm 1). A-DoOG is a simple algorithm that does
not require an extra-gradient computation at each step and is presented in Algorithm 2. While we do
not provide theoretical guarantees for A-DOG, our experiments demonstrate its efficacy in practice.
The main challenge in proving guarantees for A-D0OG appears to lie in deriving a suboptimality
bound akin to Proposition 1, whose proof strongly leverages U-D0G’s extra-gradient structure.

Algorithm 2: ACCELEGRAD-DOG (A-DoOG)

Input: Initialization z(%) € K, positive constant r. and number of iterations 7.

1 Set yp = x9 = zp and 7y = r¢
2 fort=0,1,,...,T—1do
3 Qg :ZII;:O’F]C/FI‘/

4 | g ~G(x1)

Tt

5 Nt = =
V2o @ llgrl?

6 Tl = ZZ: ar, + <1 B Zi; ak)yt
7 Yir1 = Te41 — MGt
8 | zt+1 = Ilc(2t — aunegr)
9 | 71 =max{7y, [[2e41 — 20|}
10 return xr > returning yr gives similar results in practice

46

G.3 Convex experiments

The bulk of our experiments focus on smooth stochastic convex optimization problems, matching
our theoretical assumptions.

Multiclass logistic regression. We experiment with multi-class logistic regression on multiple
tasks from the VTAB benchmark and the LIBSVM [10] suite (a full list is given in Appendix G.5).
For VTAB tasks we use features obtained from a pretrained ViT-B/32 [18] model (i.e., perform
linear probes), and for LIBSVM tasks we use apply logistic regression directly on the features
provided. Figures 2, 4, 6, 8, 10, 12, 14 and 16 show a view of the results for different datasets
analogous to Figure 1. Figures 3, 5, 7, 9, 11, 13, 15 and 17 give a complementary view by providing
training curves at different batch sizes. As discussed in Section 5, we find that both U-DoG
and A-DOG are competitive with well-tuned accelerated SGD (ASGD) and often significantly
outperform DOG and tuned SGD. This is especially true for the training loss (for which our theory
directly holds) and at large batch sizes, with A-DOG outperforming U-DOG in most cases, as both
algorithms take advantage of the reduced variance in the gradient estimates to scale effectively with
the batch size, as the theory suggests. In most experiments A-D0OG attain and tuned ASGD attain
superior convergence rate in terms of test accuracy as well as train loss; the only exception is
CIFAR-100 (Figures 4 and 5, bottom rows) where the test accuracy does not closely track the train
loss.

Least-squares. We modify the loss on a subset of the previous experiments to least squares,
learned over a one-hot encoding of the features. We use features obtained from a pretrained ViT-
B/32, similar to what we used for the multiclass logistic regression. We find that our algorithms
perform well in this setting as well. In comparison, while SGD and ASGD can perform well when
tuned correctly, they become more sensitive to the choice of step size and momentum, perform-
ing poorly when not properly tuned and sometimes diverging completely. Similar to the other
experiments, the results are given in Figures 18 to 21.

Noiseless quadratic experiments. As a final experiment, we compare the performance of the
different algorithms on the quadratic function f(z) => 1", (ﬁx? + xl) with n = 10%. The results
agree with the theoretical analysis, with all algorithms reaching the optimal solution or very close to
it, barring GD and AGD with excessively high momentum and learning rate. Results are depicted

in Figure 22.

G.4 Non-convex experiments

While we mainly focus on demonstrating the effectiveness of U-DOG and A-DOG in settings that
match our theoretical analysis, we also perform preliminary experimentation in practical scenarios,
namely training neural networks on datasets of moderate scales. In particular, we train a ResNet-50
[22] from scratch on a subset of the VTAB benchmark (Figures 23 to 27). Additionally, we repeat
two experiments from [25]: fine-tuning a CLIP model [50] on ImageNet (Figure 28), and training
a WideResnet-28-10 [63] model from scratch on CIFAR-10 (Figure 29). We observe that U-DoG
often fails to converge to competitive results, while A-DOG is quite competitive with DOG on the
VTAB tasks, but under-performs it for CIFAR-10 and ImageNet fine-tuning, indicating that it is
not a yet a viable general-purpose neural network optimizer.

47

G.5 Implementation details

Environment settings. All of our experiments were based on PyTorch [48] (version 1.12.0).
For DOG and the implementation of polynomial-decay model averaging [54], we used the the
dog-optimizer package (version 1.0.3) [25]. For ASGD, we used the native PyTorch SGD?® with
the Nesterov option enabled.

VTAB experiments were based on the PyTorch Image Models (timm, version0.7.0dev0) repos-
itory [60], with TensorFlow datasets (version 4.6.0) as a dataset backend [1]. LIBSVM [10]
experiments were based on the libsvmdata (version 0.4.1) package.

To support the training and analysis of the results, we used numpy [21], scipy [58], pandas [59]
and scikit-learn [49].

As much as possible, we leveraged existing recipes as provided by timm to train the models.

Datasets. The subset of datasets used in our VTAB experiments are: CIFAR-100 [31], CLEVR-
Dist [27], DMLab [4], Resisc45 [11], Sun397 [61, 62|, and SVHN [43]. From LIBSVM, we used
the Pendigits [2] and Covertype [7] datasets, where cover covertype we used the scaled features
version (i.e., covtype.scale). We also experiment with CIFAR-10 [31] and ImageNet [16].

Models. The computer vision pre-trained models were accessed via timm. The strings used to
load the models were: ‘resnetb0’; ‘vit_base_patch32_224 in21k’.

Complexity measure. To fairly compare all algorithms, we measure complexity by the number
of batches evaluated, i.e., the number of stochastic gradient queries performed by the algorithm.
U-DoOG requires two batches per iteration while the rest of the algorithms we consider require
only one. We note that the algorithms we compare also have different memory footprints and
runtimes per iteration (by constant factors). We focus on the number of batches as our complexity
metric since it is most relevant to our theory. Memory and per-iteration runtime optimizations are
potentially possible for U-D0OG and A-DO0OG; we leave investigating those to future work.

ASGD model selection. In the convex optimization experiments, we run (A)SGD over a wide
range of momentum and learning rate parameters. For the batch size scaling figures (e.g., the left
panels in Figure 1), we pick the parameters that reach the target metric in the smallest number of
batches, providing a conservative upper bound on the performance obtainable with a very carefully
tuned algorithm. The learning curve figures adjacent to the batch size scaling figures (e.g., the
middle panels in Figure 1) show the learning curve for the (A)SGD run attaining the best target
performance at the batch size indicated. For plots of learning curves at different batch sizes (e.g.,
Figure 19), we select the (A)SGD parameters that are the first to reach 95% of the best metric
attained by A-DoOG. If no such parameters exist, we take the parameters that reach the best
performance within the iteration budget.

Iterate averaging. When evaluating test accuracy, we follow Ivgi et al. [25] and apply polynomial-
decay weight averaging [54] with parameter 8. We did not tune this parameter or comprehensively
check how beneficial the averaging is. Nevertheless, a cursory examination of our data suggests
that averaging is mostly helpful across the board, but much more so for DOG and SGD than their
accelerated counterparts. This is in line with the theory, which provides guarantees on (essentially)
the last iterate of U-DOG, but only the averaged iterate of DOG.

"https://pytorch.org/docs/stable/generated/torch.optim.SGD.html

48

https://pytorch.org/docs/stable/generated/torch.optim.SGD.html

Learning rate schedule. We use a constant learning rate schedule for (A)SGD. We do not use a
decaying schedule such as cosine decay [34] as it would complicate comparing the smallest number
of steps required to reach a target metric, since a decaying schedule requires knowing the number
of steps in advance. Preliminary experiments indicate that, in the settings we study, cosine decay
is not significantly better than a constant schedule combined with iterate averaging.

Setting r.. Similarly to Ivgi et al. [25] we set 7. = v(1 + ||zo||) with v = 107¢. Our theoretical
analysis suggests that the particular choice of r. does not matter as long as it is sufficiently small
relative to the distance between the weight initialization x0 and the optimum.

Weight decay. We do not use weight decay in most experiments, except for training from scratch
on CIFAR-10 (Figure 29), where we use a weight decay of 5-10~%. For DOG we decay the parameters
toward zero, while for U-DOG and A-D0OG we decay the parameters toward the initial point xg.
That is, for DOG we add 5- 10742 to the stochastic gradient evaluated at 2, while for U-DoG and
A-DoG we add 5 - 1074(z — o).

Gradient accumulation. Due to GPU memory limitations, in the non-convex experiments, for
large batch sizes we divide each batch into smaller sub-batches of size of either 128 or 256 samples.
We calculate the gradient for each sub-batch and average those into a single gradient which we
then use to perform a single step. When batch normalization is used (that is, for ResNet50), this
is not mathematically identical to computing the gradient in one large batch.

49

Batches to train loss 0.963 Train loss for BS 4096 Train loss after 400 batches

0.9999

104 | # L 2% 100 0.9997
0.9990 ¢
0.9968 2
20 0.9900 &
\- EL 0.9684 5
103 4 . - 0.9000 =

e 10° 4065 - . 0.6838

. g . - : . . 0.0000

Batches to test accuracy 0.613 Test accuracy for BS 4096 Test accuracy after 400 batches 0.9999

] i P —— .

10% 0.6 bess ff‘a:':i l—m WAL bbbk 0.9997
' %, M \ 0.9990 ¢
0.9968 2
c
3 L 0.9900 o
10 0.4 i " £
0.9684 &
0.9000 =

102 L | | 0.6838

, : 0.2 : | ! 0.0000

102 104 102 104 1073 10°
batch size batches evaluated learning rate
A-DoG m U-DoG e DoG + SGD A ASGD (momentum=0.9) ASGD (best momentum)

Figure 2: Training a linear model with ViT-32 features and log loss on SVHN. Top: Train loss.
Bottom: Test accuracy after iterate averaging. First column: Batch size scaling of complexity to
reach target performance. Second column: Learning curves. Third column: ASGD performance at
all learning rates and momenta, contrasted with DOG variants.

o Train loss for BS 4 Train loss for BS 64 Train loss for BS 1024 Train loss for BS 65536
3x10
A 4
8 2x10°
f
©
. 10° - 1 1 1 o=
Test accuracy for BS 4 Test accuracy for BS 64 Test accuracy for BS 1024 Test accuracy for BS 65536
- _
5 0.6 1 1 1
5
o
2 0.4 1 1 1
k7]
g 0.2 L L“— T T T L L T T T L T T T
102 103 10 102 3 104 102 103 104 102 103 104
batches evaluated batches evaluated batches evaluated batches evaluated
A-DoG —&— U-DoG —o— DoG —— SGD —&— ASGD (momentum=0.9) ASGD (best momentum)

Figure 3: Training a linear model with ViT-32 features and log loss on SVHN. Top: Loss vs. batches
processed training for different batch sizes. Bottom: Test accuracy of averaged model vs. batches
processed for different batch sizes.

train loss

o
80751 - - -
3

Batches to train loss 0.055 Train loss for BS 4096 Train loss after 400 batches

0.9999
0.9997
0.9990 €

4 | L
10 100,

N 0.055

3] L
10 N 1072 4

0.9900 &
0.9684 §
0.9000 =
0.6838

2]
10 0.0000

y

Batches to test accuracy 0.800 Test accuracy for BS 4096

0.85
10344 E 0.80 D.800
0.75
2] |
10 0.70 A

: : ; - 0.65 - : - : : : :
10! 10? 103 104 10? 103 104 107 1072 10° 102
batch size batches evaluated learning rate

0.9999
0.9997
0.9990

0.9900 &
0.9684 §
0.9000 =
0.6838
0.0000

1400 ‘

A-DoG m U-DoG ® DoG + SGD A ASGD (momentum=0.9) ASGD (best momentum)

Figure 4: Training a linear model with ViT-32 features and log loss on CIFAR-100. Top: Train loss.
Bottom: Test accuracy after iterate averaging. First column: Batch size scaling of complexity to
reach target performance. Second column: Learning curves. Third column: ASGD performance at
all learning rates and momenta, contrasted with DOG variants.

Train loss for BS 4 Train loss for BS 64 Train loss for BS 1024 Train loss for BS 45000
10 & '!==:g il =:! 1 1
10—2 Jd i . i i
Aol
Test accuracy for BS 4 Test accuracy for BS 64 Test accuracy for BS 1024 Test accuracy for BS 45000

S 0.50 1 1 1 1
@©
B 0.25 1 1 1 1
g
102 103 104 102 103 104 102 103 104 102 103 104
batches evaluated batches evaluated batches evaluated batches evaluated
A-DoG —a— U-DoG —o— DoG —— SGD —&— ASGD (momentum=0.9) ASGD (best momentum)

Figure 5: Training a linear model with ViT-32 features and log loss on CIFAR-100. Top: Loss vs.
batches processed training for different batch sizes. Bottom: Test accuracy of averaged model vs.
batches processed for different batch sizes.

o1

0.9968 3

0.9968 2

train loss

Batches to train loss 1.150

Train loss for BS 4096

Train loss after 400 batches

104 1 1.8 x 10° 0.9999

1.7 x 10° 0.9997

A 1.6 x 10° 0.9990
1.5x10° 0.9968 3
10% | 1.4x10° 0.9900 &
1.3 x10° 0.9684 &5
12 x 10° 0.9000 =

o 11x100]°"° . 0.6838

. - ' . inie - ; : 0.0000

Batches to test accuracy 0.451 Test accuracy for BS 4096 Test accuracy after 400 batches 0.9999

4 | | PR PR .
10 P T ASRgsiaaw— | ooy
:’/ - 0.9990
\

0.4 & 0.9968 2
103+) 3 0.9900 &
0.9684 g
0-31 0.9000 =

102 © L H 0.6838

T T T S T T T a 0.0000

102 104 102 103 104 1073 10°
batch size batches evaluated learning rate
A-DoG m U-DoG e DoG + SGD A ASGD (momentum=0.9) ASGD (best momentum)

Figure 6: Training a linear model with ViT-32 features and log loss on DMLab. Top: Train loss.
Bottom: Test accuracy after iterate averaging. First column: Batch size scaling of complexity to
reach target performance. Second column: Learning curves. Third column: ASGD performance at
all learning rates and momenta, contrasted with DOG variants.

Train loss for BS 4 Train loss for BS 64 Train loss for BS 1024 Train loss for BS 65536

3x10°
e N : 31‘::;-_-.,..,,_‘ " = S
10°- ; ; : k ; ; ; k ; ; ; k ; S ;
Test accuracy for BS 4 Test accuracy for BS 64 Test accuracy for BS 1024 Test accuracy for BS 65536
5 0.41 1 1 1
o]
9]
©
0
9 0.2 1 1 1
102 103 104 10? 103 104 10? 103 104 107 103 104
batches evaluated batches evaluated batches evaluated batches evaluated
A-DoG —— U-DoG —o— DoG —— SGD —A&— ASGD (momentum=0.9) ASGD (best momentum)

Figure 7: Training a linear model with ViT-32 features and log loss on DMLab. Top: Loss vs.
batches processed training for different batch sizes. Bottom: Test accuracy of averaged model vs.
batches processed for different batch sizes.

52

Batches to train loss 0.010 Train loss for BS 4096 Train loss after 400 batches

0.9999
0.9997
0.9990 .
0.9968 3
0.9900 &
0.9684 §
0.9000 =
0.6838
0.0000

1044 101
102 Qp.010

103,
10—5,

/.
“Ij/liffi::é?;:jE
‘ |

Batches to test accuracy 0.875 Test accuracy for BS 4096 Test accuracy after 400 batches
L 094 - | T

0.9999
0.9997
0.9990
0.9968 3
0.9900 &
0.9684 §
0.9000 =
0.6838
0.0000

104,

103,
0.7 4

102,

100 102 10° 10 102 10° 10 104 1072 10° 102
batch size batches evaluated learning rate

(.

A-DoG m U-DoG e DoG + SGD A ASGD (momentum=0.9) ASGD (best momentum)

Figure 8: Training a linear model with ViT-32 features and log loss on Resisc45. Top: Train loss.
Bottom: Test accuracy after iterate averaging. First column: Batch size scaling of complexity to
reach target performance. Second column: Learning curves. Third column: ASGD performance at
all learning rates and momenta, contrasted with DOG variants.

Train loss for BS 4 Train loss for BS 64 Train loss for BS 1024 Train loss for BS 18900
%]
8 100 a ety | | leaagaga| |]
c
T 105]]]
b=
Test accuracy for BS 4 Test accuracy for BS 64 Test accuracy for BS 1024 Test accuracy for BS 18900
- s
@ 0.751 - - -
3
S 0.50 1 1 1 1
@©
% 0.25 1 1 1 1
g
102 10° 10° 102 10° 10° 102 10° 10 102 10° 10°
batches evaluated batches evaluated batches evaluated batches evaluated
A-DoG —&— U-DoG —o— DoG —— SGD —&— ASGD (momentum=0.9) ASGD (best momentum)

Figure 9: Training a linear model with ViT-32 features and log loss on Resisc45. Top: Loss vs.
batches processed training for different batch sizes. Bottom: Test accuracy of averaged model vs.
batches processed for different batch sizes.

53

train loss

0.9999

Batches to train loss 0.100 Train loss for BS 4096 Train loss after 400 batches
0.9997
0.9990 €

10% F 100 — , s
\ 0.100 e M
1072+ - 0.9900 &
103 d H H 0.9684 g

0.9968 3

iy] 0.9000 =
i 0.6838
. . . M . . . : . 0.0000

14096 " §

Batches to test accuracy 0.703 Test accuracy for BS 4096 Test accuracy after 400 batches

1 08— t—f—t—t—a—a—a
1044 3 0703 -
0.6 1 r
103 4 . 3
0.4+ r
102 4 F 0.2 L

°
]
3

0.9999
0.9997
0.9990
0.9968 3
0.9900 &
0.9684 §
0.9000 =
0.6838
0.0000

102 10 102 10° 104 104 1072 10° 102
batch size batches evaluated learning rate

A-DoG m U-DoG ® DoG + SGD A ASGD (momentum=0.9) ASGD (best momentum)

Figure 10: Training a linear model with ViT-32 features and log loss on Sun397. Top: Train loss.
Bottom: Test accuracy after iterate averaging. First column: Batch size scaling of complexity to
reach target performance. Second column: Learning curves. Third column: ASGD performance at
all learning rates and momenta, contrasted with DOG variants.

test accuracy

Train loss for BS 4 Train loss for BS 64 Train loss for BS 1024 Train loss for BS 65536
100 | B EEEeig| (F—R I Reaigpg| (oo 1
"*‘
107> A 1 1 1
Test accuracy for BS 4 Test accuracy for BS 64 Test accuracy for BS 1024 Test accuracy for BS 65536
0.5 1 1 1 1
0.0- . - T T T T 4 T T T T T T
102 103 104 102 103 104 102 103 104 102 103 104
batches evaluated batches evaluated batches evaluated batches evaluated
A-DoG —&— U-DoG —o— DoG —— SGD —&— ASGD (momentum=0.9) ASGD (best momentum)

Figure 11: Training a linear model with ViT-32 features and log loss on Sun397. Top: Loss vs.
batches processed training for different batch sizes. Bottom: Test accuracy of averaged model vs.
batches processed for different batch sizes.

54

train loss

Batches to train loss 1.155 Train loss for BS 4096 Train loss after 400 batches

1.8 x 10° 0.9999
4 17 x 10° 0.9997
107 1.6 x 10° % 0.9990
1.5 x 10° :
1.2 ” 130 o “\,\q 0.9968
103 | 1.3x10° N\ \ ‘ 0.9900
1.2 x10° Hi — 0.9684
11 x10° 155 0.9000
g o 3 \‘\" X 0.6838
. E -~ 10°4 . Fr R ; : 0.0000
Batches to test accuracy 0.465 Test accuracy for BS 4096 Test accuracy after 400 batches 0.9999
104 4 3 03 70.465 I "7‘“ ety 0.9997
. 0.9990
0.4 1 - 0.9968
0.9900
103 L 0.9684
0.31 i 0.9000
® & 0.6838
102 100 o 100 10 10-3 10° 0.0000
batch size batches evaluated learning rate
A-DoG m U-DoG e DoG + SGD A ASGD (momentum=0.9) ASGD (best momentum)

Figure 12: Training a linear model with ViT-32 features and log loss on CLEVR-Dist. Top: Train
loss. Bottom: Test accuracy after iterate averaging. First column: Batch size scaling of complexity
to reach target performance. Second column: Learning curves. Third column: ASGD performance
at all learning rates and momenta, contrasted with DOG variants.

3 % 100 Train loss for BS 4 Train loss for BS 64 Train loss for BS 1024 Train loss for BS 65536
X
e N : i“::l:hn-n htt;hq-n
10°- ; ; : k ; ; ; k ; ; ; k ; S ;
Test accuracy for BS 4 Test accuracy for BS 64 Test accuracy for BS 1024 Test accuracy for BS 65536
5 0.41 1 1 1
9]
9]
©
k7]
2 0.2 1 1 1
102 103 104 10? 103 104 10?2 103 104 107 103 104
batches evaluated batches evaluated batches evaluated batches evaluated
A-DoG —— U-DoG —o— DoG —— SGD —A— ASGD (momentum=0.9) ASGD (best momentum)

Figure 13: Training a linear model with ViT-32 features and log loss on CLEVR-Dist. Top: Loss
vs. batches processed training for different batch sizes. Bottom: Test accuracy of averaged model
vs. batches processed for different batch sizes.

55

Momentum

train loss

Batches to train loss 0.765

103 4

@
e
3

Batches to test accuracy 0.700

104

Train loss for BS 4096

Train loss after 1000 batches

100 4

0.9999
0.9997
0.9990
0.9968 2

[
o 0.9900 3

0.9684 §
0.9000
0.6838

6x 1071 ’ A

Test accuracy for BS 4096

0.0000

Test accuracy after 1000 batches

0.7 700
A/‘/

0.6 1

0.5 1

0.9999

PR

7

0.9997
0.9990 ¢
0.9968 3
0.9900 ©
0.9684 5
0.9000 =

0.6838
0.0000

0.4 1

102 4

104

‘.95{

© 000

103 100 10°

learning rate

102 103 104
batches evaluated

102 103
batch size

10!

A-DoG m U-DoG e DoG + SGD A ASGD (momentum=0.9) ASGD (best momentum)

Figure 14: Training a linear model with log loss on LIBSVM/CovertypeScale. Top: Train loss.
Bottom: Test accuracy after iterate averaging. First column: Batch size scaling of complexity to
reach target performance. Second column: Learning curves. Third column: ASGD performance at
all learning rates and momenta, contrasted with DOG variants.

Train loss for BS 64 Train loss for BS 512 Train loss for BS 8192

Train loss for BS 8

2x10°

100 4

6x 1071 . . - . . - . e

Test accuracy for BS 8 Test accuracy for BS 64 Test accuracy for BS 512 Test accuracy for BS 8192

>
O
c
5 0.6 1 1 1
o
o
©
k7]
2 0.4+ - -
102 103 104 102 10 104 102 10° 104 102 10 10
batches evaluated batches evaluated batches evaluated batches evaluated
A-DoG —— U-DoG —o— DoG —— SGD —4&— ASGD (momentum=0.9) ASGD (best momentum)

Figure 15: Training a linear model with log loss on LIBSVM/CovertypeScale. Top: Loss vs. batches
processed training for different batch sizes. Bottom: Test accuracy of averaged model vs. batches
processed for different batch sizes.

56

train loss

test accuracy

Batches to train loss 0.150 Train loss for BS 4096 Train loss after 1000 batches

0.9999
0.9997
0.9990 .
0.9968 3
0.9900 &
0.9684 §
0.9000 =
10-1 I 0.6838
- - ; -]]] 0.0000

104, 101’

100,
103,

Batches to test accuracy 0.850 Test accuracy for BS 4096 Test accuracy after 1000 batches 0.9999

0.9997
0.9990 ¢
0.9968 3
0.9900 &
0.9684 §
0.9000 =
102 ‘=N I 0.6838

) 0.0000

TR o A o

1044 3 b
0.8

103,
0.6 1

© 000

10! 103 10? 103 104 1073 100 103
batch size batches evaluated learning rate

A-DoG m U-DoG e DoG + SGD A ASGD (momentum=0.9) ASGD (best momentum)

Figure 16: Training a linear model with log loss on LIBSVM /Pendigits. Top: Train loss. Bottom:
Test accuracy after iterate averaging. First column: Batch size scaling of complexity to reach target
performance. Second column: Learning curves. Third column: ASGD performance at all learning
rates and momenta, contrasted with DOG variants.

Train loss for BS 1 Train loss for BS 32 Train loss for BS 512 Train loss for BS 7494
104 E E E
o b| | MM X | |
10714 E . E E
Test accuracy for BS 1 Test accuracy for BS 32 Test accuracy for BS 512 Test accuracy for BS 7494
0.75 1 1 1 1
0.50 1 1 1 1
0.25 1 1 1 1
102 103 104 102 103 104 102 103 10* 102 103 104
batches evaluated batches evaluated batches evaluated batches evaluated
A-DoG —a— U-DoG —o— DoG —— SGD —&— ASGD (momentum=0.9) ASGD (best momentum)

Figure 17: Training a linear model with log loss on LIBSVM/Pendigits. Top: Loss vs. batches
processed training for different batch sizes. Bottom: Test accuracy of averaged model vs. batches
processed for different batch sizes. As most algorithms here fail to converge at reasonable rate, we
use significantly lower targets to choose hyper-parameters.

o7

Batches to train loss 0.062 Train loss for BS 4096 Train loss after 400 batches

10% 1 L 0.9999
9 x 1072 0.9997
0.9990
8 x 1072 0.9968
103 4 3 & 0.9900
'4&; 7 x1072 R 0.9684
\ w 0.9000
') 0.062 Hlk 0.6838
3 —2 g %
: = 6x10 : Forenn : : : : 0.0000
Batches to test accuracy 0.633 Test accuracy for BS 4096 Test accuracy after 400 batches 0.9999
0.633 . =al
104 - | 0.6 - i T, 0.9997
p 0.9990
0.5 ‘ 0.9968
, 0.41 | 0.9900
1034 3 0.9684
0.3 0.9000
© 0.2 It | 0.6838
. s 21 . e . . e 0.0000
10? 104 10? 103 104 1074 1072 10°
batch size batches evaluated learning rate
A-DoG m U-DoG e DoG + SGD A ASGD (momentum=0.9) ASGD (best momentum)

Figure 18: Training a linear model with ViT-32 features and least-squares loss on SVHN. Top: Train
loss. Bottom: Test accuracy after iterate averaging. First column: Batch size scaling of complexity
to reach target performance. Second column: Learning curves. Third column: ASGD performance
at all learning rates and momenta, contrasted with DOG variants. This is the same as Figure 1.

Train loss for BS 4 Train loss for BS 64 Train loss for BS 1024 Train loss for BS 65536

107+ 1

9 9x 102
2 8x102
o

T 7x1072
~ 6x102

Test accuracy for BS 4 Test accuracy for BS 64 Test accuracy for BS 1024 Test accuracy for BS 65536

o
o
‘

©
N
|

test accuracy

o
N
‘

102 10® 10
batches evaluated
ASGD (best momentum)

102 10° 104 102 10® 104
batches evaluated batches evaluated
—— SGD —A— ASGD (momentum=0.9)

102 10® 104
batches evaluated

A-DoG —— U-DoG —o— DoG

Figure 19: Training a linear model with ResNet50 features and least-squares loss on SVHN. Top:
Loss vs. batches processed training for different batch sizes. Bottom: Test accuracy of averaged
model vs. batches processed for different batch sizes.

o8

omentum

train loss

Batches to train loss 5.20e-03 lo- Train loss for BS 4096 Train loss after 400 batches

0-2 - - 0.9999
10% F 9x1073 0.9997
8 x10-3 0.9990
0.9968
1034 L 7x1073 0.9900
0.9684
-3
6x10 0.9000
102 i b5 10_3 5.20e-03 :. ' & 0.6838
. T T T — 0.0000
Test accuracy for BS 4096 Test accuracy after 400 batches 0.9999
10414 0.85 ’DV ———h g D 0.9997
, | 0.9990
0.9968
103 - 0.80 1 r ‘ 0.9900
\ 0.9684
102 0.75 . | | 0.9000
It 0.6838
S i
: T : : T T T T T T 0.0000
10! 102 103 104 102 103 104 1074 1072 10°
batch size batches evaluated learning rate
A-DoG m U-DoG e DoG + SGD A ASGD (momentum=0.9) ASGD (best momentum)

Figure 20: Training a linear model with ViT-32 features and least-squares loss on CIFAR-100. Top:
Train loss. Bottom: Test accuracy after iterate averaging. First column: Batch size scaling of
complexity to reach target performance. Second column: Learning curves. Third column: ASGD
performance at all learning rates and momenta, contrasted with DOG variants.

Train loss for BS 4 Train loss for BS 64 Train loss for BS 1024 Train loss for BS 45000
1072 4]]]
9x1073
8x 1073
7x1073
6x1073 \
5x 1073 _ :
Test accuracy for BS 4 Test accuracy for BS 64 Test accuracy for BS 1024 Test accuracy for BS 45000
- :
§ 0.75 1 | W |
g 0.501 1 1 1
©
2 0.25 . . .
g
102 103 104 102 103 104 102 103 104 102 103 104
batches evaluated batches evaluated batches evaluated batches evaluated
A-DoG —a— U-DoG —o— DoG —— SGD —&— ASGD (momentum=0.9) ASGD (best momentum)

Figure 21: Training a linear model with ResNet50 features and least-squares loss on CIFAR-100. Top:
Loss vs. batches processed training for different batch sizes. Bottom: Test accuracy of averaged model
vs. batches processed for different batch sizes.

Momentum

Suboptimlaity Suboptimlaity after 500 batches Suboptimlaity after 2500 batches 0.9999

> - T] Pt 50 0.9997 _
£ 10 | , hd L ; 0.9990
£ g \ 0.9968 2
= 0.9900 aEJ
o 10° E E 0.9684
8 = 0.9000 £
0 2 0.6838

T T T T T T T T T T T T 0.0000

10° 10! 102 103 104 10> 103 107! 10! 104 1071 102
batches evaluated learning rate learning rate
A-DoG —a— U-DoG —o— DoG —— GD —— AGD (momentum=0.9) AGD (best momentum)

Figure 22: Training a model on a noiseless quadratic problem. At larger base learning rates, all AGD
variants diverge while DOG variants remain stable, and U-D0OG and A-DOG perform especially well.

Train loss for BS 32 Train loss for BS 128 Train loss for BS 512 Train loss for BS 8192
o 4I—I-I—I-I-I-H='_. L e o = = Nru
. 2% 10 ._.-H—.mT
kel
g 100] Jd 4 4
6x107!
Test accuracy for BS 32 Test accuracy for BS 128 Test accuracy for BS 512 Test accuracy for BS 8192
0
20.751 ; ; ;
>
|9}
& 0.50 - 1 1 1
7]
£0.251 .—.—.—W I I a—nunus¥®
103 104 103 104 103 10% 10t 102 103
batches evaluated batches evaluated batches evaluated batches evaluated

test accuracy

train loss
=

o

o

A-DoG —&— U-DoG —e— DoG

Figure 23: Training a ResNet50 model from scratch on SVHN. Top: Loss vs. batches processed
training for different batch sizes. Bottom: Test accuracy vs. batches processed for averaged iterates

at varied batch sizes.

Train loss for BS 32 Train loss for BS 128 Train loss for BS 512 Train loss for BS 8192

W ‘:"“-'—'-l-.ﬂ

Test accuracy for BS 32 Test accuracy for BS 128 Test accuracy for BS 512 Test accuracy for BS 8192

0.50 1 1 1 1
0.25 1 1 1 1
0.00 4 = = L = = L - . AL . "
103 104 103 104 103 104 10t 102 103
batches evaluated batches evaluated batches evaluated batches evaluated

A-DoG —&— U-DoG —e— DoG

Figure 24: Training a ResNet50 model from scratch on Sun397. Top: Loss vs. batches processed
training for different batch sizes. Bottom: Test accuracy vs. batches processed for averaged iterates

at varied batch sizes.

60

train loss

I
J

)

Train loss for BS 32

Train loss for BS 128

Train loss for BS 512

Train loss for BS 8192
[— - a-aaa

Test accuracy for BS 32

Test accuracy for BS 128

Test accuracy for BS 512

Test accuracy for BS 8192

o
o
‘

test accuracy
o
>

|
;

103 10
batches evaluated

103 104 103 104
batches evaluated batches evaluated
A-DoG —&— U-DoG —e— DoG

10 102 103

batches evaluated

Figure 25: Training a ResNet50 model from scratch on DMLab. Top: Loss vs. batches processed
training for different batch sizes. Bottom: Test accuracy vs. batches processed for averaged iterates

at varied batch sizes.

Train loss for BS 32

Train loss for BS 128

Train loss for BS 512

Train loss for BS 8192

ﬁ—..._._._.*.g

Test accuracy for BS 8192

102 103

batches evaluated

10!

Train loss for BS 8192
a8 aa-a

Test accuracy for BS 8192

A 0
& 1004
f
©
s 10-14
Test accuracy for BS 32 Test accuracy for BS 128 Test accuracy for BS 512
>
& 0.75 1
5
Y 0.50 1
@©
% 0.251
3
103 10* 103 10* 10° 10
batches evaluated batches evaluated batches evaluated
A-DoG —&— U-DoG —e— DoG

Figure 26: Training a ResNet50 model from scratch on Resisc45. Top: Loss vs. batches processed

training for different batch sizes. Bottom: Test accuracy vs. batches processed for averaged iterates

at varied batch sizes.

Train loss for BS 32 Train loss for BS 128 Train loss for BS 512

100 4
@
o
j=
@ 10—2 4

Test accuracy for BS 32 Test accuracy for BS 128 Test accuracy for BS 512

3
© 0.751
3
O
© 0.50 1
o
£0.251

10° 104
batches evaluated

10° 104 103 104
batches evaluated batches evaluated
A-DoG —— U-DoG —eo— DoG

S

10! 102
batches evaluated

103

Figure 27: Training a ResNet50 model from scratch on CLEVR-Dist. Top: Loss vs. batches processed
training for different batch sizes. Bottom: Test accuracy vs. batches processed for averaged iterates

at varied batch sizes.

61

train loss

test accuracy

train loss

test accuracy

100 J

Train loss for BS 32

Train loss for BS 64

Train loss for BS 512

Train loss for BS 8192

o
0

Test accuracy for BS 32

Test accuracy for BS 64

Test accuracy for BS 512

Test accuracy for BS 8192

o
o

e

~

I
iN

103

104 105

batches evaluated

103 104 10° 103 104
batches evaluated batches evaluated
A-DoG —— U-DoG —eo— DoG

103
batches evaluated

102

Figure 28: Fine-tuning a Clip-ViT-B/32 model on ImageNet, at different batch sizes. Top: Loss
vs. step training curve for different batch sizes. Bottom: Test accuracy vs. step curve for averaged
iterates at varied batch sizes.

100]

Train loss for BS 32

Train loss for BS 64

Train loss for BS 512

Train loss for BS 8192

by
=}

Test accuracy for BS 32

Test accuracy for BS 64

Test accuracy for BS 512

Test accuracy for BS 8192

o
©
!

o
o

10° 104 10

batches evaluated

10 104 10° 103 104
batches evaluated batches evaluated
A-DoG —— U-DoG —eo— DoG

/L
102 103

batches evaluated

Figure 29: Training a Wide-ResNet-28-10 model on CIFAR-10 from scratch, at different batch sizes.
Top: Loss vs. step training curve for different batch sizes. Bottom: Test accuracy vs. step curve for
averaged iterates at varied batch sizes.

62

	Introduction
	Related work

	Preliminaries and algorithmic framework
	Analysis in the noiseless case
	General suboptimally bound
	Iterate stability
	Rate of convergence in the noiseless case

	Analysis in the stochastic case
	Analysis with bounded noise
	From bounded to sub-Gaussian noise
	Corollary: mini-batch of bounded noise

	Experiments
	Proof for Section 3 (the noiseless setting)
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Theorem 1

	Proofs for Section 4 (the stochastic setting)
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Theorem 2
	Proof of Corollary 1
	Proof of Corollary 2

	Suboptimality lemmas
	Weighted regret to suboptimality conversion (Lemma 1)
	Inductive suboptimality bound (Lemma 2)
	General regret bound (Lemma 3)

	Iterate stability lemmas
	A weighted regret bound (Lemma 4)
	Inductive stability bound (Lemma 5)
	Single-step iterate stability (Lemma 6)

	Concentration bounds
	An empirical-Bernstein-type time uniform concentration bound (Lemma 7)
	Concentration bound for suboptimally proof (Lemma 8)
	Concentration bound for iterate stability proof (Lemma 9)
	Relating [t] to [t] (Lemma 10)
	Concentration inequality for bounded random vectors (Lemma 11)

	Auxiliary lemmas
	The growth rate of k[k]k (Lemma 12)
	Discrete derivative lemma (Lemma 13)
	Discrete integral lemma (Lemma 14)
	Additional lemmas from prior work

	Experimental details
	U-DoG step sizes
	AcceleGrad-DoG (A-DoG)
	Convex experiments
	Non-convex experiments
	Implementation details

